
LibRTS: A Spatial Indexing Library by Ray Tracing
Liang Geng

The Ohio State University
Columbus, Ohio, USA
geng.161@osu.edu

Rubao Lee
Freelance

Columbus, Ohio, USA
lee.rubao@ieee.org

Xiaodong Zhang
The Ohio State University
Columbus, Ohio, USA
zhang.574@osu.edu

Abstract
The Ray-Tracing (RT) core has become a widely integrated
feature in modern GPUs to accelerate ray-tracing render-
ing. Recent research has shown that RT cores can also be
repurposed to accelerate non-rendering workloads. Since
the RT core essentially serves as a hardware accelerator for
Bounding Volume Hierarchy (BVH) tree traversal, it holds
the potential to significantly improve the performance of
spatial workloads. However, the specialized RT program-
ming model poses challenges for using RT cores in these
scenarios. Inspired by the core functionality of RT cores, we
designed and implemented LibRTS, a spatial index library
that leverages RT cores to accelerate spatial queries. LibRTS
supports both point and range queries and remains muta-
ble to accommodate changing data. Instead of relying on
a case-by-case approach, LibRTS provides a general, high-
performance spatial indexing framework for spatial data
processing. By formulating spatial queries as RT-suitable
problems and overcoming load-balancing challenges, LibRTS
delivers superior query performance through RT cores with-
out requiring developers to master complex programming
on this specialized hardware. Compared to CPU and GPU
spatial libraries, LibRTS achieves speedups of up to 85.1x for
point queries, 94.0x for range-contains queries, and 11.0x for
range-intersects queries. In a real-world application, point-
in-polygon testing, LibRTS also surpasses the state-of-the-art
RT method by up to 3.8x.

CCS Concepts: • Computing methodologies→ Parallel
algorithms; Ray tracing; • Information systems→ Geo-
graphic information systems; Multidimensional range
search.

Keywords: GPU, Ray Tracing, Spatial Index, Multidimen-
sional Index

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1443-6/25/03
https://doi.org/10.1145/3710848.3710850

1 Introduction
Ray tracing is a photorealistic rendering technique widely
used in the movie industry and video games. A crucial step
in this process involves casting rays and determining their
intersections with primitives.1 To reduce the search space, a
Bounding Volume Hierarchy (BVH) tree is constructed over
the primitives in the scene. However, software-based BVH
traversal does not efficiently utilize computing hardware
resources—particularly on GPUs—due to branch divergence
and irregular memory access patterns. As a result, ray tracing
has traditionally been limited to offline rendering [13].

Recent hardware advancements, particularly the integra-
tion of Ray Tracing (RT) cores into modern GPUs, have
made real-time ray tracing feasible by accelerating both BVH
traversal and ray-primitive intersection tests. This innova-
tion delivers an order-of-magnitude speedup over software-
based implementations on GPUs. Although RT cores are
specifically engineered for ray-tracing rendering, recent re-
search has shown that non-rendering workloads can also
benefit from these accelerators by converting tasks into ray-
primitive intersection problems. This approach significantly
boosts performance for various applications, including near-
est neighbor search, clustering, spatial joins, and database
queries [22, 22, 26, 32, 38, 40, 41, 47, 49, 49, 58, 61, 74].

Although numerous examples illustrate how RT cores can
be repurposed, the process requires carefully adapting the
original problem into an RT workload while minimizing
overhead [25]. Furthermore, repurposing RT cores demands
that users have expertise in both the target domain and RT
technology. As a result, current research efforts typically
repurpose RT cores on a case-by-case basis.
Numerous successful efforts to repurpose RT cores have

motivated us to develop a library that simplifies the program-
ming challenges involved in using these specialized units.
Although RT cores are not designed as general-purpose hard-
ware, we argue that spatial workloads are particularly well-
suited to them for twomain reasons: (1) The BVH accelerated
by RT cores serves as a fast spatial index, despite its strict
querying constraints; and (2) spatial workloads naturally re-
semble rendering tasks, as both operate on 2D/3D geometric
data. In contrast, non-spatial data workloads must encode
1D data into 3D primitives [26, 40, 44], incurring additional
computational and storage overhead.

1In ray-tracing rendering, a primitive is a geometry associated with mate-
rial/texture. In this paper, a primitive is synonymous with geometry.

396

https://doi.org/10.1145/3710848.3710850
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3710848.3710850&domain=pdf&date_stamp=2025-02-28

PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Liang Geng, Rubao Lee, and Xiaodong Zhang

Motivated by the inherent spatial indexing capabilities of
RT cores and their immense potential for spatial workloads,
we present LibRTS, a fast and generic spatial indexing library
powered by RT cores. LibRTS supports two fundamental
spatial queries—point queries and range queries—and can be
used out of the box without requiring any RT programming.
Moreover, LibRTS supports insertions, deletions, and updates
for dynamically changing geometries. By providing a user-
friendly interface, LibRTS boosts the productivity of spatial
system developers and delivers high-performance spatial
queries, making this powerful hardware more accessible to
a broader range of users.
Adapting RT cores into a fast and generic spatial index

engine presents several challenges:
1. The Translation Challenge: RT cores only support detect-

ing ray-primitive intersections. However, spatial queries are
more diverse, often involving points, rectangles, and various
predicates that differ from ray-primitive intersection tests.
2. The Load Balancing Challenge: Highly skewed geomet-

ric distributions can cause severe load imbalances among
threads. Because RT cores use a single-ray programming
model, these imbalances lead to suboptimal performance.
3. The Mutability Challenge: RT cores do not support dy-

namic insertions or deletions of geometries, making it diffi-
cult to handle mutations in spatial data [26, 27].

To address these challenges, we transform the range query
into a mathematically equivalent rectangle-diagonal inter-
section test. We then simulate the diagonal using a ray, ef-
fectively creating an RT-efficient ray-box intersection test.
To resolve the load imbalance issue, we introduce a tech-
nique called Ray Multicast, which evenly distributes geome-
tries into 𝑘 sub-spaces. Consequently, 𝑘 rays are cast into
these sub-spaces, reducing each thread’s maximum num-
ber of intersections to one-𝑘th of the original. To achieve
mutability in LibRTS, we use a technique called Instancing.
Instead of building a single monolithic BVH, we place newly
inserted geometries into separate BVHs and then organize
these BVHs into an instance acceleration structure.

Our contributions are summarized as follows:
1.We propose a method to convert range and point queries

into RT-friendly problems, allowing them to effectively uti-
lize RT cores (§3.1, §3.2, and §3.3).

2. We are the first to identify and address the load balanc-
ing challenge that arises when repurposing RT cores (§3.4).

3. By leveraging the Instancing feature, we enable dynamic
insertion and deletion of geometries despite limited BVH
update support, thus providing mutability for our spatial
index (§4).

4. LibRTS is an open-source library offering a user-friendly
interface that simplifies the integration of RT cores into
spatial data processing applications (§5).

2 Background
2.1 Spatial Index
A spatial index is designed to accelerate queries over ge-
ometries, including points, lines, and polygons. Most spa-
tial indexes support range queries, using bounding boxes
to retrieve geometries that satisfy a given predicate such
as 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 or 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 . For example, we create a spatial
index over a set of rectangles 𝑅 representing building bound-
aries. Given another set of rectangles 𝑆 representing flood
zones, we can quickly identify buildings at risk of flooding
using the predicate 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 (𝑟, 𝑠), where 𝑟 ∈ 𝑅 and 𝑠 ∈ 𝑆 .

The primary design goal of spatial indexes is to filter out
irrelevant geometries by reducing the search space. K-D trees
[10, 11, 21, 73], Quadtrees [20, 71], and grids [1, 2] partition
space into non-overlapping subspaces. They are most suit-
able for indexing geometries without extents, such as points.
For indexing complex geometries, such as rectangles or poly-
gons, it is more efficient to use geometry-partitioned indexes,
such as R-trees [8, 24, 39, 55, 68–70] and BVHs [15, 23, 43, 57].
Both R-trees and BVHs use bounding boxes to organize ge-
ometries. R-trees are widely used in the geospatial commu-
nity due to their dynamic update capabilities, whereas BVHs
are preferred in the graphics community for their fast index
construction and efficient handling of ray-primitive intersec-
tion queries.
Tree-based indexes, though algorithmically efficient due

to their hierarchical structure, can be inefficient on GPUs
because of random memory access and branch divergence
[5, 6]. In contrast, grid-based indexes map geometries to cells
with linear memory space, improving memory efficiency but
struggling with skewed data [4, 59, 60]. Consequently, de-
spite their hardware inefficiencies, tree-based indexes remain
widely adopted in spatial systems.

A new class of learned spatial indexes learns a cumula-
tive distribution function (CDF) derived from geometry data,
enabling constant-time inference of qualifying geometries
[16, 31, 35, 36, 56]. However, most learned spatial indexes are
designed for disk-based predictions and merely identify the
disk pages containing the queried results [34, 56]. Further-
more, training a learned index is time-consuming [37], and
few such indexes support geometries with extents [3, 62].

2.2 Ray Tracing
Ray tracing is a technique used to render photorealistic im-
ages by simulating light transportation in a scene. It cal-
culates how much radiant energy emitted by light sources
reaches the viewer’s eyes after reflecting off various surfaces
[67]. A crucial step in this process is casting rays from the
viewer’s perspective into the scene to determine how they
interact with the primitives they encounter.
Ray. A ray is defined by a half-line parameterized by an

origin𝑂 , a direction vector ®𝑑 , and a parameter 𝑡 that controls

397

LibRTS: A Spatial Indexing Library by Ray Tracing PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

its extent. This definition can be formalized by Equation (1):

R(𝑡) = 𝑂 + 𝑡 · ®𝑑,where 𝑡 ≥ 0 (1)

For a given ray,𝑂 and ®𝑑 are fixed, with 𝑡 being the variable
parameter that controls the distance the ray travels.
Primitive. In ray-tracing rendering, a primitive is a fun-

damental geometric shape, such as a triangle, sphere, or
Axis-Aligned Bounding Box (AABB) that serves as a build-
ing block for composing more complex models.

Ray-Primitive Intersection. If the ray intersects a prim-
itive at 𝑡 = 𝑡ℎ𝑖𝑡 , an intersection point at R(𝑡ℎ𝑖𝑡) is identified.
The parameter 𝑡 at the intersection point can be calculated
by solving the common solution of the ray and the primi-
tive equations. It is often desirable to consider intersections
within a certain range, as intersections too close to or too far
from the ray’s origin may have negligible effects on render-
ing results. To accommodate this, ray tracing frameworks
typically require a search interval [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥] when casting
a ray and retain the intersection only if 𝑡𝑚𝑖𝑛 ≤ 𝑡ℎ𝑖𝑡 ≤ 𝑡𝑚𝑎𝑥 .

Case 1

tmin

tmax

Case 2

tmin

tmax
O

O
d

d

Minimum Corner

Maximum Corner

Figure 1. Two valid ray-AABB intersection cases: ray hits
the AABB or ray origin is within the AABB

The AABB is an important geometric construct because it
can enclose any complex shape. Most ray tracing frame-
works, such as NVIDIA OptiX, support using AABBs to
implement customized primitives. For ease of demonstra-
tion, Figure 1 shows an AABB in 2-D dimensions, defined
by its minimum corner (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛) and maximum corner
(𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥). The ray-AABB intersection test is then per-
formed to identify all potential ray-primitive intersections.
As shown in Figure 1, there are two scenarios that qualify as
ray-AABB intersections.
Case 1: The origin O is outside an AABB, and the ray

intersects the boundaries of the AABB at R(𝑡ℎ𝑖𝑡) such that
𝑡𝑚𝑖𝑛 ≤ 𝑡ℎ𝑖𝑡 ≤ 𝑡𝑚𝑎𝑥 .

Case 2: The origin O is inside an AABB, regardless of
whether the ray intersects the AABB.

2.3 Acceleration Structure
Ray tracing rendering requires a data structure to narrow
down the primitives that intersect with rays. The BVH tree
is predominantly used as an Acceleration Structure (AS) in
ray tracing rendering.

Figure 2(a) shows a scenewith three triangles and two rays,
𝑅𝑎𝑦1 and 𝑅𝑎𝑦2, illustrating how a BVH accelerates intersec-
tion tests. A BVH is a tree where each node 𝑁𝑖 is associated
with an AABB 𝐵𝑖 that encloses the AABBs of its children. For
example, 𝐵2 encloses 𝐵4 and 𝐵5, while 𝐵1 encloses all of the
other bounding boxes. If 𝑅𝑎𝑦1 intersects 𝐵1, we then check
its children (𝑁2 and 𝑁3) for ray–AABB intersections. Since
𝑅𝑎𝑦1 does not intersect 𝐵2, the child nodes of 𝑁2 are skipped
entirely. Subsequently, upon finding that 𝑅𝑎𝑦1 intersects 𝐵3,
the triangle inside 𝐵3 is tested, completing the traversal. In
contrast, 𝑅𝑎𝑦2 must visit every node in the BVH because it
intersects 𝐵2.

In rendering, a complex scene comprises many geometric
components, some of which may be identical but positioned
differently. For example, Figure 2(b) shows a scene with two
helicopters and a plane. Each model has its own coordinate
system, known as the local coordinate system. To integrate
the models into the scene, a Scale-Rotate-Translate (SRT)
transformation is applied to transform the model from the
local coordinate system to the world coordinate system. The
SRT transformation is usually represented by a 3x4 row-
major object-to-world matrix that defines how to scale, ro-
tate, and move a model.
Since a model may appear multiple times in different po-

sitions, creating a BVH for each instance is inefficient. The
technique called Instancing addresses this by allowing a sin-
gle BVH to be created for a model. To achieve Instancing,
two types of acceleration structures are used: the Geometry
Acceleration Structure (GAS) and the Instance Acceleration
Structure (IAS). The BVH serves as the GAS for the model,
while the IAS links the GAS with an SRT matrix. Therefore,
it is only necessary to create multiple links that connect the
IAS to the GAS using different SRT matrices to reuse the
same model, resulting in a traversal graph.

Figure 2(c) shows the traversal graph of the scene. The root
node is the IAS, which links to 𝐺𝐴𝑆#1 twice using different
SRT matrices. Building the IAS requires a reference to the
GAS and an SRT matrix. Since the IAS does not store the
primitives, building an IAS is lightweight and very fast. With
the traversal graph, the ray will be transformed by the SRT
matrix and redirected to the GAS to find the intersections.

2.4 Programming Model for RT Cores
RT cores, introduced with the Turing architecture [13], pro-
vide dedicated hardware units for ray-primitive intersection
and BVH traversal. Compared to a software-emulated BVH
search, which requires thousands of instruction slots per
ray, Turing GPUs achieve up to a 10x speedup by offload-
ing tree traversal and ray-primitive intersection tests to the
specialized RT cores [50]. Additionally, the ray-primitive per-
formance has doubled with each new generation of GPUs,
offering "free" performance gains for RT-enabled applica-
tions [50, 51].

398

PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Liang Geng, Rubao Lee, and Xiaodong Zhang

B1
B2

B4

B5

B3

Scene Ray2

Ray1

N1

N4 N5

N3N2

BVH

(a) A scene with three triangles and its BVH

Transform #1

Instance
Acceleration

Structure

Geometry
Acceleration
Structure #1

World Coordinate System

Copy &Transform

Local Coordinate System

Transform

Model 1

Model 2

x

x

y

x

y

Geometry
Acceleration
Structure #2

Transform #1
Transform #2

Transform #3 Transform #3

Transform #2

(c) Traversal graph of acceleration structures(b) Composing a scene with instancing

Local Coordinate System

y

Scene

Figure 2. (a) A scene with three triangles and its BVH. Casting two rays 𝑅𝑎𝑦1 and 𝑅𝑎𝑦2 to find which triangles are being hit
by the ray; (b) a scene that comes from two models. Each model has its own coordinate system. By transforming the models, a
complex scene can be composed; (c) an example of a traversal graph of a composed acceleration structure for the scene in (b).

NVIDIA OptiX [53] allows users to develop RT programs
using a subset of the CUDA language. OptiX requires users
to implement several callback functions, known as shaders
in CUDA with certain restrictions, such as the unavailability
of shared memory and block synchronization instructions.
Imposing these restrictions allows OptiX to freely reschedule
a ray at any point in time to other lane, thread block or even
Streaming Multiprocessor (SM) for efficiency and coherence
[53]. OptiX employs a single-ray programming model, where
the shaders are executed on a single thread for each ray.

BVH construction is a prerequisite for ray tracing. To build
the BVH, the user provides an array of built-in primitives,
such as triangles, spheres, curves, or customized AABBs in
3-D Euclidean space. The BVH structure and construction
algorithm are opaque andmanaged by the video driver. Upon
completion of the BVH construction, a traversal handle is
returned to access the BVH. OptiX allows the user to update
the coordinates of primitives in a constructed BVH, called
BVH refitting. Recent research shows that updating a BVH
is up to three times faster than rebuilding [26]. However,
inserting or deleting from a BVH is not supported. In addition
to BVH construction, the user must implement a series of
shaders to cast rays and handle intersections.

RayGen (RG) shader is the entry point of an RT program,
where rays are cast, transferring the control from SMs to RT
cores.

IsIntersection (IS) shader is invoked if a ray potentially2
hits an AABB. This shader is available only when using
AABB as a primitive, allowing the user to check whether a
ray hits the geometry enclosed by the AABB.

AnyHit (AH) shader is invoked if a ray hits any primitive.
ClosestHit (CH) shader is invoked if a ray hits the primi-

tive closest to the ray origin.
Miss (MS) shader is invoked when the traversal is finished

if a ray does not hit any primitive.

2The invocation of the IS shader does not always indicate the ray hits an
AABB.

3 From Spatial Query to Ray-tracing
This section explains how to formulate point queries and
range queries using the Contains and Intersects predicates
as ray tracing problems. Additionally, repurposing RT cores
for spatial queries introduces a load imbalance challenge.
To address this, we present a technique called Ray Multi-
cast to balance workloads across threads. For simplicity, the
methods are described in 2D, but extending them to 3D is
straightforward since OptiX operates natively in 3D space.

3.1 Point Query
Given a set of rectangles 𝑅 and query points 𝑆 , a point query
𝑄 (𝑅, 𝑆) returns a list of pairs (𝑟, 𝑠) such that 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 , and
the predicate𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑟, 𝑠) is true. Definition 1 specifies the
𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 predicate, where evaluates to true if the point 𝑠 lies
within the rectangle 𝑟 . Figure 3 illustrates the point query,
where 𝑟1 to 𝑟3 represent the rectangles and 𝑠1 to 𝑠4 denote the
query points. In this example, the query point 𝑠2 is within
𝑟1 and 𝑟2, while 𝑠4 is within 𝑟3. Therefore, the query result is
{(𝑟1, 𝑠2), (𝑟2, 𝑠2), (𝑟3, 𝑠4)}.

Definition 1 (Rectangle-Point Containment). For a given
point 𝑝 = (𝑥,𝑦) and a rectangle 𝑟 = {(𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛), (𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥)},
predicate 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑟, 𝑝) is true if 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥 ∧ 𝑦𝑚𝑖𝑛 ≤
𝑦 ≤ 𝑦𝑚𝑎𝑥 , otherwise, 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑟, 𝑝) is false.

The idea of accelerating point queries on RT cores involves
simulating a point with a short ray. As introduced in §2.2,
a segment of a ray is defined by specifying a search range
[𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥]. A point can be simulated using a very short ray
by appropriately setting this range. We then build a BVH
from the rectangles 𝑅, using their AABBs as primitives. For
each point 𝑠 ∈ 𝑆 , a short ray is cast, with the ray’s origin
representing the point’s location. If the point lies within an
AABB, the ray-AABB intersection shader will detect it. These
steps are detailed below.
BVH Construction. For each rectangle 𝑟 ∈ 𝑅 on the

2-D plane, an AABB is created that has the same x and y
coordinates as 𝑟 . Since OptiX defines all primitives in 3-D

399

LibRTS: A Spatial Indexing Library by Ray Tracing PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

space, we set the z-coordinate to zero. These AABBs are then
organized in an array and processed by OptiX, where the
BVH is automatically constructed.
Ray Casting. Recall that there are two ray-AABB inter-

section cases (§2.2). For each point query, we cast a ray from
the point as its origin with a small 𝑡𝑚𝑎𝑥 value, and the di-
rection can be arbitrary. The occurrence of Case 2 explicitly
indicates that the query point falls within an AABB. As de-
picted in Figure 3, each point 𝑠𝑖 casts a short ray where the
ray origin 𝑂 has the same xy-coordinate as 𝑠𝑖 . Point 𝑠2 falls
inside 𝑟1 and 𝑟2, resulting in two ray-AABB intersections.
Despite not being contained by any rectangle, point 𝑠1 still
counts as an intersection due to Case 1. This scenario, termed
a false positive hit, is mitigated by setting 𝑡𝑚𝑎𝑥 to the smallest
representable floating point number, such as FLT_MIN.
Result Collection. Whenever Case 1 or Case 2 occurs,

the 𝐼𝑆 shader will be triggered. The 𝐼𝑆 shader allows the
user to obtain the ray origin and the index of the primitive
being hit by the ray. This information allows us to evaluate
the 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 predicate to filter out the occurrence of Case 1.
Therefore, in the 𝐼𝑆 shader, we filter out the false positives
by evaluating the predicate and insert a pair of (𝑟𝑖 , 𝑠𝑖) into a
result queue.

Query Point Rectangle Hit F.P. Hit

Cast Rays

Miss

r1

r2

r3 r3

r2

r1

s1 s2

s4

s2

s4

s3 s3

s1

Figure 3. Casting rays from the query points results in three
intersection cases: a hit (black); a False Positive (F.P.) hit
(grey), and a miss (light grey).

3.2 Range Query with Contains Predicate
Given two sets of rectangles 𝑅 and 𝑆 , a range query 𝑄 (𝑅, 𝑆)
employs a Contains predicate (referred to as Range-Contains)
to return a list of rectangle pairs (𝑟, 𝑠) such that 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 ,
and 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑟, 𝑠) is true (see Definition 2).

Definition 2 (Rectangle-Rectangle Containment). Given
two rectangles 𝑟1 and 𝑟2, predicate 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑟1, 𝑟2) is true if
𝑟1.𝑥𝑚𝑖𝑛 ≤ 𝑟2.𝑥𝑚𝑖𝑛 < 𝑟2.𝑥𝑚𝑎𝑥 ≤ 𝑟1.𝑥𝑚𝑎𝑥 ∧𝑟1 .𝑦𝑚𝑖𝑛 ≤ 𝑟2 .𝑦𝑚𝑖𝑛 <

𝑟2.𝑦𝑚𝑎𝑥 ≤ 𝑟1 .𝑦𝑚𝑎𝑥 , otherwise, 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑟1, 𝑟2) is false.

The RT-accelerated Range-Contains method is based on
the observation that if 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑟, 𝑠) is true, then the center
point 𝑠𝑐 of rectangle 𝑠 must also lie within 𝑟 , i.e.,𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑟, 𝑠𝑐)
is true, where 𝑠𝑐 =

(𝑠.𝑥𝑚𝑖𝑛+𝑠.𝑥𝑚𝑎𝑥

2 ,
𝑠.𝑦𝑚𝑖𝑛+𝑠.𝑦𝑚𝑎𝑥

2
)
. In turn, point

𝑠𝑐 is within rectangle 𝑟 does not always mean 𝑟 contains 𝑠 .
Based on this, the range query can be reduced to a point

query (§3.1) that identifies a list of candidate rectangle-point
pairs (𝑟, 𝑠𝑐). Finally, the𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 predicate is evaluated over
this list to filter the pairs (𝑟, 𝑠) where 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑟, 𝑠) is true.

3.3 Range Query with Intersects Predicate
Give two sets of rectangles 𝑅 and 𝑆 , a range query with
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 predicate (referred to as Range-Intersects) returns
all the pairs of rectangles (𝑟, 𝑠) such that 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 (𝑟, 𝑠) is
true (Definition 3), where 𝑟 ∈ 𝑅 and 𝑠 ∈ 𝑆 .
Definition 3 (Rectangle-Rectangle Intersection). Given two
rectangles 𝑟1 and 𝑟2, 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 (𝑟1, 𝑟2) is true when 𝑟1 .𝑥𝑚𝑖𝑛 ≤
𝑟2 .𝑥𝑚𝑎𝑥 ∧ 𝑟1 .𝑥𝑚𝑎𝑥 ≥ 𝑟2 .𝑥𝑚𝑖𝑛 ∧ 𝑟1.𝑦𝑚𝑖𝑛 ≤ 𝑟2 .𝑦𝑚𝑎𝑥 ∧ 𝑟1.𝑦𝑚𝑎𝑥 ≥
𝑟2 .𝑦𝑚𝑖𝑛 , otherwise it is false.

(a) the diagonal of
r2 intersect r1

r1

r2
r1

r2 r1

r2
(b) the anti-diagonal

of r1 intersect r2
(c) the (anti-)diagonal and rectangle

are mutually intersected

Figure 4. Three cases of (anti-)diagonal-rectangle intersec-
tions that imply the two rectangles intersect.

A potential approach to formulating the Range-Intersects
query as an RT problem involves casting rays from the four
corners of rectangles 𝑅 and 𝑆 , effectively reducing the range
query to a point query once again. However, this method
generates duplicate query results, as multiple corners may
intersect the same rectangle, and deduplication can be com-
putationally expensive. To address this issue, we propose a
new formulation technique that can effectively eliminate the
duplicated results by transforming the query into a rectangle-
diagonal intersection problem.

An important observation regarding the 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 predi-
cate is that if 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 (𝑟1, 𝑟2) is true, then either the diago-
nal of 𝑟2 intersects 𝑟1 or the anti-diagonal of 𝑟1 intersects 𝑟2
or both cases are true, as demonstrated in Figure 4(a)-(c), re-
spectively.We formally define the diagonal and anti-diagonal
of a rectangle in Definition 4.
Definition 4 (Diagonal and Anti-diagonal). For a rectangle
𝑟 , its diagonal 𝐷𝑟 is a line segment defined by two endpoints
(𝑥𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥) and (𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑖𝑛). The anti-diagonal 𝐷̂𝑟 is defined
by (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛) and (𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥).
In Definition 5, we define the intersection between a rec-

tangle and its diagonal, which will be used in Theorem 1.
Definition 5 (Rectangle-Line Segment Intersection). For a
given rectangle 𝑟 and a line segment 𝑙 , the 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 (𝑟, 𝑙) is
true if 𝑙 intersects any boundary of 𝑟 .

Based on the above observation, the 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 predicate
for two rectangles can be transformed into equivalent tests
for the intersections of their diagonals, as stated in Theorem
13. As previously noted, a (anti-)diagonal is essentially a line
3The proof of the theorem is provided in the supplementary material.

400

PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Liang Geng, Rubao Lee, and Xiaodong Zhang

segment, which can be represented as a ray. Therefore, the
range query using the 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 predicate can be reformu-
lated into two passes of ray-AABB intersection tests, referred
to as Forward Casting and Backward Casting.

Theorem 1. Given two rectangles 𝑟1 and 𝑟2 that do not con-
tain each other (𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑟1, 𝑟2) is false and 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑟2, 𝑟1)
is false), if 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 (𝑟2, 𝐷𝑟1) is true or 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 (𝑟1, 𝐷𝑟2)
(Definition 5) is true ⇐⇒ 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 (𝑟1, 𝑟2) is true.

Forward Casting involves casting rays from the diagonals
of 𝑆 to detect intersections with 𝑅. Conversely, Backward
Casting involves casting rays from the anti-diagonals of 𝑅 to
detect intersections with 𝑆 . Finally, the results of these two
ray-casting passes are merged to produce the final intersec-
tion results.

BVH Construction. Differing from the previous queries,
the 𝑅𝑎𝑛𝑔𝑒 − 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 requires two BVHs for the rectangles
𝑅 and 𝑆 , respectively, to support the two ray casting passes.

Ray Casting. Since a ray is a semi-infinite line, we can
use a portion of it to simulate a (anti-)diagonal by setting the
search range parameters 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 (§2.2). For a diagonal
defined by two endpoints 𝑝1 and 𝑝2, the ray parameters can
be derived as follows [22].

Ray origin 𝑂 = 𝑝1

Ray direction ®𝑑 = 𝑝2 − 𝑝1

𝑡𝑚𝑖𝑛 = 0, and 𝑡𝑚𝑎𝑥 = 1
(2)

We can verify the correctness of these parameters by
substituting them into Equation (1). Specifically, we have
R(𝑡) = 𝑂+𝑡 · ®𝑑 = 𝑝1+𝑡 · (𝑝2−𝑝1). When 𝑡𝑚𝑖𝑛 = 0,R(𝑡𝑚𝑖𝑛) = 𝑝1,
representing one endpoint of the diagonal. Similarly, when
𝑡𝑚𝑎𝑥 = 1, R(𝑡𝑚𝑎𝑥) = 𝑝2, representing the other endpoint of
the diagonal. Thus, the ray effectively captures all intersec-
tions along the diagonal.
Note that Theorem 1 has a precondition that rectangles

𝑟1 and 𝑟2 cannot mutually contain each other. However, Def-
inition 3 does consider the case of rectangle containment.
Our method still works in this scenario. If 𝑟1 contains 𝑟2, the
ray cast from the diagonal of 𝑟2 will intersect 𝑟1 because the
origin of 𝑟2 is within 𝑟1 (§2.2, Case 2). The same logic applies
if 𝑟2 contains 𝑟1. The time complexity is𝑂 (𝑅 · log 𝑆 +𝑆 · log𝑅)
due to the two passes of ray casting.

Result Collection. An intersection can be discovered in
both Forward Casting and Backward Casting, as illustrated
in Figure 4(c). To avoid duplicate results, we check whether
the intersection can be discovered in both passes. If it can,
we retain the intersection only in the forward casting pass.

Algorithm 1 demonstrates the implementation of Forward
Casting process. The RayGen shader is the entry point of an
RT program, where casting a ray along the diagonal of the
query, with the origin and direction calculated based on the
corner points of the query. In Line 9, optixTrace casts the
ray, carrying the query rectangle ID. After that, the BVH will

autonomously traversed on the RT cores guided by the ray.
Whenever the traversal reaches to the leaves of the BVH, the
𝐼𝑆 shader will be invoked, allowing users to check whether
the ray intersects an primitive, which is an AABB in our
scenario.

Note that 𝐼𝑆 only reports potential intersections, so it can
be invoked even if the ray does not intersect an AABB. There-
fore, in Line 18, we explicitly check whether the diagonal of
𝑠 intersects 𝑟 . The diagonal-rectangle intersection test can be
efficiently implemented using the well-known "Slab Method"
[30, 54]. In Line 19, if an intersection with 𝑟 is detected, we
further verify whether the anti-diagonal of 𝑟 intersects 𝑠 to
avoid duplicate results (see Figure 4(c)). Backward Casting is
implemented in a similar way, but it omits the deduplication
process.

Algorithm 1: FindIntersections - Forward Casting
Input : Indexed rectangles 𝑅 and queries 𝑆
Input :BVH traversal handle ℎ built over 𝑅
Output :𝑋 - Query Results

1 // Entrypoint, invoked when the program starts

2 procedure RayGen
3 𝑡𝑚𝑖𝑛 = 0
4 𝑡𝑚𝑎𝑥 = 1
5 // Casting rays from 𝑆

6 for each 𝑠 in 𝑆 do
7 𝑂 = (𝑠.𝑥𝑚𝑎𝑥 , 𝑠 .𝑦𝑚𝑖𝑛) // Ray along diagonal

8 ®𝑑 = (𝑠.𝑥𝑚𝑖𝑛, 𝑠 .𝑦𝑚𝑎𝑥) −𝑂

9 𝑜𝑝𝑡𝑖𝑥𝑇𝑟𝑎𝑐𝑒 (ℎ,𝑂, ®𝑑, 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 , 𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑠 (𝑖𝑑𝑠))
10 end for
11 end procedure
12 // Invoked when ray potentially hits an AABB

13 procedure IsIntersection
14 𝑖𝑑𝑟 = 𝑜𝑝𝑡𝑖𝑥𝐺𝑒𝑡𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝐼𝑛𝑑𝑒𝑥 ()
15 𝑖𝑑𝑠 = 𝑜𝑝𝑡𝑖𝑥𝐺𝑒𝑡𝑃𝑎𝑦𝑙𝑜𝑎𝑑0 ()
16 𝑟 = 𝑅 [𝑖𝑑𝑟]
17 𝑠 = 𝑆 [𝑖𝑑𝑠]
18 if the diagonal of 𝑠 intersects 𝑟 then
19 if the anti-diagonal of 𝑟 does not intersect 𝑠 then
20 𝑋 = 𝑋 ∪ (𝑖𝑑𝑟 , 𝑖𝑑𝑠)
21 end if
22 end if
23 end procedure

3.4 Ray Multicast for Load Balancing
Recall that OptiX adopts a single-ray programming model
(§2.4), meaning that shaders triggered by a single ray are exe-
cuted by the same thread that casts the ray. Under this design,
a load balancing issue arises when some threads handle very
few intersections while others handle many intersections.
We observed that this imbalance issue notably impacts the
Range-Intersects query in the Backward Casting stage. Vari-
ous techniques have been proposed to improve intra-GPU
load balancing by reassigning workloads to warps or thread
blocks [9, 45, 46, 63, 64]. Unfortunately, these techniques are

401

LibRTS: A Spatial Indexing Library by Ray Tracing PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

not applicable to RT cores because OptiX does not support
thread block or warp synchronization (§2.4). Additionally,
the number of primitives a ray intersects is unknown before-
hand, rendering workload rebalancing challenging.

To overcome these limitations, we designed a static load-
balancing method called Ray Multicast. The idea is to evenly
split 𝑁 primitives into 𝑘 sets, 𝑁1, 𝑁2, . . . , 𝑁𝑘 , and distribute
them into 𝑘 non-overlapping regions on the 2-D plane, re-
ferred to as sub-space. Then, a ray R is duplicated into 𝑘

rays R1,R2, . . . ,R𝑘 , each responsible for finding intersec-
tions within one of the sub-spaces. Under the single-ray
model, each thread still casts a single ray but the number of
intersections per ray is no more than |𝑁 |

𝑘
. Casting 𝑘 rays into

the 𝑘 sub-spaces with 𝑘 threads captures all the intersections
without duplications or omissions.

x

y

x

1.0

Thread #1

1.0 2.0 3.0

y Thread #1 Thread #2 Thread #3

(a) Imbalance case

(b) Applying "Ray Multicast": placing the AABBs into three sub-spaces and casting the rays
with offsets to find the intersections in each sub space; each ray only hits one primitive

Sub-space 1 Sub-space 2
Sub-space 3

X offset = 0 X offset = 1 X offset = 2

Thread #1 casts a ray
The ray executes on a single
thread
Imbalanced because the thread
processes three intersections

Put the primitives into the sub-
spaces
Three threads cast the rays
with x offsets to the sub-spaces
Each thread only finds one
intersection

OptiX Single-ray Model Ray Multicast

Figure 5. Load balancing with Ray Multicast technique

Figure 5 demonstrates how Ray Multicast works. Assum-
ing we have three AABBs and 𝑘 = 3. Figure 5(a) shows an
imbalanced case in which a single ray hits all three AABBs.
To construct non-overlapping subspaces, we scale the AABB
coordinates to a range of 0 to 1 and place them into sub-
spaces with 𝑥 ∈ (0, 1), 𝑥 ∈ (1, 2), and 𝑥 ∈ (2, 3) 4. In Figure
5(b), three rays are cast with x-coordinates offset by 0, 1, and
2. Each ray therefore intersects only one AABB.
Determining Parameter 𝑘 . Ray Multicast reduces the

intersections to |𝑁 |
𝑘

per thread at the cost of casting 𝑘 times
more rays. Therefore, we need to balance the workload per
threadwith the cost of ray casting.We use a cost-basedmodel
to determine the optimal 𝑘 . The model estimates the costs
in two parts: the ray casting cost (𝐶𝑅) and the intersection

4For the 2-D case, we can also put the geometries into subspaces by speci-
fying the unused z-coordinate.

cost (𝐶𝐼). The total cost (𝐶) is derived by weighting 𝐶𝑅 and
𝐶𝐼 (Equation (3)). The goal is to find a 𝑘 to minimize cost 𝐶 .

𝐶 = (1 −𝑤) ·𝐶𝑅 +𝑤 ·𝐶𝐼 (3)

Assume that there are |𝑅 | rays to cast before using Ray
Multicast, and that the search cost per ray is 𝑂 (log|𝑁 |) for
a BVH with |𝑁 | primitives, as the BVH is a tree-based data
structure. When applying Ray Multicast, the cost of casting
rays is 𝑘 times higher, as illustrated in Equation (4).

𝐶𝑅 = |𝑅 | · 𝑘 · 𝑙𝑜𝑔(|𝑁 |) (4)

The total number of intersections is |𝑁 | · |𝑅 | · 𝑠 , where 𝑠 is
the selectivity indicating the percentage of returned intersec-
tions from |𝑁 | primitives and |𝑅 | rays. The intersection cost
𝐶𝐼 is the total number of intersections divided by 𝑘 because
the shaders can process the “multicasted” rays in parallel, as
shown in Equation (5).

𝐶𝐼 =
|𝑁 | · |𝑅 | · 𝑠

𝑘
(5)

To determine 𝑠 , we use a sampling technique. By sampling
a small portion of primitives and rays and performing a brute-
force trial run, we can calculate the number of intersections
with neglectable overhead. This helps estimate the number
of intersections for the entire dataset. Finding the optimal
𝑘 for the lowest cost 𝐶 can be accomplished through an
exhaustive search, as 𝑘 must be a power of two for warp
efficiency. The effectiveness and overhead of this parameter-
finding technique are discussed in §6.5.

4 Update Spatial Index
4.1 Insert
To enable insertions, we avoid building a monolithic BVH
for all geometries. Instead, we adopt a two-level acceleration
structure. The bottom level consists of the BVHs for each
batch of insertions serving as the GASs (§2.3). The top level
is an IAS that links to the GASs with an identity SRT matrix.
This method eliminates the need to rebuild the BVH for each
insertion. Instead, we only need to incrementally build a new
BVH and then rebuild the IAS. Rebuilding the IAS is fast, as
it merely links the BVHs without storing the geometries.

The 𝐼𝑆 shader needs to be modified to support insertions.
In the 𝐼𝑆 shader, optixGetPrimitiveIndex can be used to
query which primitive is being hit by the ray. The primitive
index is renumbered from zero for each BVH. Therefore,
when a ray hits a primitive, we have to calculate the global
primitive index. We maintain a prefix sum array 𝐴 for every
batched insertion, where 𝐴[𝑖] = 𝐴[𝑖 − 1] + 𝐼 and 𝐼 is the
number of insertions in the 𝑖-th batch. OptiX also allows
users to query the ID of the BVHwith optixGetInstanceId.
Using the prefix sum, BVH ID, and the primitive index, we
can compute the global primitive index in 𝑂 (1) time.

402

PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Liang Geng, Rubao Lee, and Xiaodong Zhang

4.2 Update and Delete
OptiX provides a mechanism to update an acceleration struc-
ture, including both GAS and IAS, by specifying the new
coordinates of primitives. The existing research shows that
updating the BVH is more than three times faster than re-
building it from scratch [26]. However, the quality of the BVH
can degrade when the spatial location of the data changes sig-
nificantly. Therefore, rebuilding could be necessary if query
performance significantly degrades.

LibRTS relies on the updating support of OptiX. Users pass
an array of new rectangles along with their IDs. This input
is used to update an array of primitives cached in LibRTS.
Using the provided IDs and new rectangles, the primitives are
updated with their new coordinates, which are subsequently
used to refit the BVH.
For deletions, we turn the rectangles being deleted into

degenerate cases. For example, we set the 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 of
AABBs to the same value. Then, we refit the BVH with the
updated primitives, just as we do during an update. This
setting reduces the extent of the AABB to zero, preventing
them from being found by ray casting.

5 Implementation and Interface for Users
LibRTS is a header-only librarywith additional OptiX shaders
that can be easily embedded into users’ programs. Users only
need to implement a handler to process the query results in
a C++ header file. This header file is then included in the Op-
tiX shaders, which are subsequently compiled into Parallel
Thread Execution (PTX) code. The PTX code will be loaded
during the initialization of LibRTS to create the rendering
pipeline.

Algorithm 2 lists the interfaces of LibRTS. To construct an
instance of LibRTS, the class requires two template param-
eters, COORD_T which can be 𝑓 𝑙𝑜𝑎𝑡 or 𝑑𝑜𝑢𝑏𝑙𝑒 , and N_DIMS,
which is the number of dimensions of spatial data (2 or 3).
To run a query, users need to pass a predicate 𝑝 , a pointer to
the queries in device memory, and the number of queries 𝑛.
Subsequently, RTSIndex_handler will be invoked to handle
the query results. LibRTS also includes two built-in handlers,
called the "Counting Handler" and the "Collecting Handler,"
which are responsible for counting the number of query
results and storing the query results, respectively.

6 Evaluation
6.1 Evaluation Setup
Baselines. We endeavor to include the most competi-

tive baselines on both CPUs and GPUs, as listed in Table
1. Building on the work by Lawson et al. [33], who evalu-
ated 20 open-source spatial libraries and concluded that no
single solution is optimal for every query—while highlight-
ing CGAL [14] and Boost [12] for their overall performance.

Algorithm 2: API Summary and an Example
1 template <typename COORD_T, int N_DIMS>
2 class RTSIndex {
3 // Load PTX and initialize the rendering pipeline

4 void Init(const char * ptx_root);
5 // Run spatial queries on RT cores

6 template <typename QUERY_T>
7 void Query(Predicate p, QUERY_T *queries, int n, void * arg,

cudaStream_t stream);
8 // Insert new rectangles into the index

9 void Insert(rect_t *rectangles, int n, cudaStream_t stream);
10 // Delete the rectangles by the IDs

11 void Delete(int *ids, int n, cudaStream_t stream);
12 // Update the coordinates of the rectangles

13 void Update(rect_t *rectangles, int *ids, int n, cudaStream_t
stream);

14 }
15 // Invoked when found qualified results

16 // “arg” allows users to pass their parameters to the

handler

17 __device__ void RTSIndex_handler(Predicate p, void *

arg, int rect_id, int query_id) {
18 // Example: collect results with a queue

19 static_cast <Queue*>(arg)->Append(rect_id, query_id);
20 }

Therefore, we include these libraries. We also evaluate Par-
Geo, a computational geometry library optimized for multi-
core environments [65, 66]. Recognizing the growing trend
of learned-based indexes, we also consider them. However,
most learned spatial indexes are limited to point indexing,
whereas LibRTS supports indexing geometries with extents.
To the best of our knowledge, GLIN [62] is the only learned
spatial index capable of handling complex geometries, and
thus, we include it in our evaluation.

Ideally, to demonstrate the benefits of LibRTS of hardware-
based RT cores, wewould compare the performance numbers
with enabled and disabled RT cores. However, OptiX does
not allow users to manually disable hardware acceleration.
To address this, we include Linear BVH (LBVH), a software-
emulated BVH on GPUs [28], to illustrate that LibRTS indeed
benefits from hardware acceleration. We further assess a real-
world application, the Point in Polygon (PIP) test. cuSpatial
[52] employs an Octree to accelerate PIP queries. Since a
rectangle is a special type of polygon, cuSpatial also supports
point queries. Finally, we include RayJoin [22], a state-of-
the-art spatial join algorithm designed for RT cores.
Environment.We evaluate the GPU-based libraries on

an NVIDIA RTX 3090 and the CPU-based libraries on an
HPC server equipped with two AMD EPYC 7713 CPUs (128
cores in total). The cuSpatial version used is 24.08, while
LibRTS is implemented with OptiX 8.0 and CUDA 12.3.

Since spatial queries are read-only, distributing them across
multiple cores is straightforward. Therefore, for CPU-based
baselines, we evenly distribute all queries across all CPU

403

LibRTS: A Spatial Indexing Library by Ray Tracing PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

Table 1. Summaries of the artifacts evaluated in the paper

Artifact Index Type Query Type Platform
Boost [12] R-Tree Point, Range CPU
CGAL [14] KD-Tree Point CPU
ParGeo [65, 66] KD-Tree Point CPU
GLIN [62] Learned Index Range CPU
LBVH [28] Linear BVH Point, Range GPU
cuSpatial [52] Octree Point GPU
RayJoin [22] BVH on RT cores PIP GPU
LibRTS BVH on RT cores Point, Range, PIP GPU

cores to ensure a fair comparison. Lastly, due to the limited
FP64 units in RTX GPUs, we implement the queries using
FP32 precision.

Datasets. Table 2 shows the real-world geospatial datasets
collected from ArcGIS Hub [18] and OpenStreetMap [17].
These datasets are in the form of polygons, for which we
create rectangles to enclose the polygons as the input for
spatial indexes. We also sampled a subset of OSMParks from
the European continent, named EUParks, as a moderately
large dataset to accommodate the baseline RayJoin, which
runs out of memory when processing the full-scale OSM
datasets. Additionally, we use Spider to generate synthetic
datasets to evaluate the scalability of LibRTS [29].

Table 2. Real-world datasets collected from ArgGIS Hub and
OpenStreetMap.

Dataset Polygons Description
USCounty 12.2K Boundaries of the U.S. Counties
USCensus 248.9 K U.S. Census block groups
USWater 463.6 K Boundaries of U.S. water resources
EUParks 1.9 M Parks and green areas in Europe
OSMLakes 8.3 M Boundaries of water areas worldwide
OSMParks 11.5 M Parks and green areas worldwide

Queries. The queries are generated to return a given ratio
of the rectangles, which is a well-adopted evaluation method
[33, 48, 62]. For the point and Range-Contains queries, we
ensure each query falls within at least one rectangle. For the
Range-Intersects query, we generate queries with selectivity
levels of 0.01%, 0.1%, and 1%.
Timing. Index construction time is excluded from all

query-related experiments, except those presented in §6.9.
Another exception applies to the Range-Intersects query of
LibRTS, which requires constructing a BVH for incoming
queries. Since the BVH cannot be pre-determined until the
queries are available, its construction time is included in the
overall query time to ensure a fair comparison.

6.2 Point Query
From Figure 6(a), we observe that Boost R-Tree performs
the best among the CPU-based libraries, except on EUParks
dataset, where CGAL surpasses Boost. LibRTS outperforms
the best CPU baseline by factors ranging from 74.4x (USAWa-
ter) to 302.1x (OSMParks). Although cuSpatial is a GPU-based

library, it performs the worst among all baselines. LBVH
ranks as the second-best library, benefiting from the advan-
tages of large memory bandwidth and massive parallelism
of the GPU. However, LibRTS remains significantly faster
than LBVH, demonstrating the advantages of leveraging
the hardware-based BVH accelerator - RT cores, achieving
speedups of up to 85.1x over LBVH on OSMLake.

USCounty
USCensus

USWater
EUParks

OSMLakes
OSMParks

(a) Execution Time on 100K Point Queries

10−2

10−1

100

101

102

103

Qu
er

y
Ti

m
e

(m
s)

cuSpatial
ParGeo

CGAL
Boost

LBVH
LibRTS

50K 100K 200K 400K 800K
(b) Varying query size on OSMParks dataset

10−3

10−1

101

103

105

Qu
er

y
Ti

m
e

(m
s)

cuSpatial
ParGeo

CGAL
Boost

LBVH
LibRTS

Figure 6. (a) Query time of 100K point queries; (b) Query
time by varying the number of queries on OSMParks dataset

Figure 6(b) illustrates how query time varies as the number
of queries increases. The three point-based indexes - CGAL,
ParGeo, and cuSpatial - exhibit nearly constant search times
because they index the query points. In contrast, the run-
ning times of the baselines that index rectangles, including
LibRTS, increase linearly with the number of query points.
Consequently, the performance gap between these two in-
dexing strategies narrows. Nonetheless, LibRTS consistently
outperforms all baselines, even for a very large number of
queries.

6.3 Range Query with Contains Predicate
Figure 7(a) illustrates the execution time of the Range-Contains
query. Among the baselines, the learned index GLIN exhibits
the longest runtime, followed by the Boost R-Tree. The GPU-
based LBVH outperforms Boost by an order of magnitude on
the first four smaller datasets. However, when querying the
full-scale OSM datasets, LBVH achieves only a 3x speedup
over Boost. This is because traversing large datasets gen-
erates substantial memory traffic, which exposes the ineffi-
ciencies of software-based tree traversal. In contrast, LibRTS
leverages hardware-based RT cores, delivering significant
performance gains. It achieves speedups ranging from 1.9x
on the USCounty dataset to 94.0x on the OSMParks dataset
compared to LBVH.

Figure 7(b) illustrates the trends in query time as the query
size varies. When the number of queries increases from 50K
to 800K, Boost and LibRTS experience a growth in query time
of 8.2x and 5.2x, respectively. In contrast, GLIN and LBVH
exhibit minimal sensitivity to the increase in queries, with
their query times rising by only about 1.3 and 2.4x, respec-
tively. Despite handling more queries, LibRTS consistently
outperforms all the baselines, demonstrating its scalability
in handling larger query volumes.

404

PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Liang Geng, Rubao Lee, and Xiaodong Zhang

USCounty
USCensus

USWater
EUParks

OSMLakes
OSMParks

(a) Execution time on 100K Range-Contains queries

10−2

100

102

104

Qu
er

y
Ti

m
e

(m
s)

GLIN
Boost

LBVH
LibRTS

50K 100K 200K 400K 800K
(b) Varying query size on OSMParks dataset

10−2

100

102

104

Qu
er

y
Ti

m
e

(m
s)

GLIN
Boost

LBVH
LibRTS

Figure 7. (a) Query time of 100K range queries with the
𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 predicate; (b) Query time by varying the number
of queries on OSMParks dataset

6.4 Range Query with Intersects Predicate
Range-Intersects is the most computationally expensive spa-
tial query due to its intensive index traversal. To avoid ex-
haustingmemory by storing query results, we set the number
of queries to 10K. Figure 8(a)-(c) shows the query times for
different selectivity levels. As shown in Figure 8(a), LBVH
is significantly faster than Boost for small datasets. For ex-
ample, with a selectivity of 0.01%, LBVH achieves speedups
of 7.3x, 5.4x, and 3.5x over Boost on USCounty, USCensus,
and USWater datasets, respectively. However, for EUParks
dataset, the running times of Boost and LBVH are nearly
identical, although they are running on different hardware
platforms. For larger datasets such as OSMLakes and OSM-
Parks, LBVH underperforms compared to the Boost R-tree.
The performance disparity arises because a significant por-
tion of the index must be traversed for larger datasets or
high-selectivity queries. In such scenarios, the software-
implemented LBVH suffers from random memory access
patterns and branch divergence caused by excessive tree
traversal, leading to suboptimal performance. In contrast, Li-
bRTS mitigates these issues by leveraging dedicated RT cores
[25], resulting in speedups of 1.3x to 2.3x over the best base-
line performance. As selectivity increases, the performance
gap between LibRTS and the baselines widens (Figures 8(b)-
(c)). At a selectivity of 0.1%, LibRTS achieves speedups of up
to 6.8x (USWater). When selectivity increases to 1%, LibRTS
delivers speedups up to 11.0x (USCensus).

Figure 8(d) illustrates query times as the number of queries
increases under a selectivity of 0.1%. Initially, Boost and
LBVH exhibit comparable performance for 10K queries. As
the number of queries increases, LBVH surpasses Boost in
performance. However, LibRTS consistently outperforms all
the baselines, maintaining its performance advantage even
as the query count increases.

6.5 Effectiveness of Load Balacing
In §3.4, we introduce the Ray Multicast technique for im-
proved load balancing, which requires the parameter𝑘 to find
the lowest ray casting cost. Figure 9(a) shows query times
for Range-Intersects queries with varying 𝑘 . As 𝑘 increases,
the query times decrease due to the intersection processing

is evenly distributed to 𝑘 threads. For example, LibRTS takes
24.26ms on USCensus when 𝑘 = 1. When increasing 𝑘 from
2 to 16, the running time consistently decreases from 11.9ms
to 3.1ms, resulting in a 7.8x speedup compared to not us-
ing load balancing. When 𝑘 is greater than 16, the overhead
of casting rays offsets the benefits of more balanced work-
loads. In Figure 9(a), the red circles represent the predicted
parameters by our cost-based model. For example, the model
predicates 𝑘 should be 32 for USCensus dataset, which is very
close to the optimal 𝑘 . For OSMLakes and EUParks datasets,
our method correctly infers the optimal 𝑘 .
Figure 9(b) breaks down the total query time into four

components, which shows that the majority of time is spent
in the backward cast stage. As discussed in §3.4, our predic-
tion algorithm samples a small portion of datasets to esti-
mate selectivity, which is then used to determine the optimal
𝑘 . During selectivity estimation, we employ a brute-force
approach to calculate the number of intersections on the
samples. Therefore, the cost of this estimation depends only
on the number of geometries and queries, independent of
their distributions. To sum up, the prediction time is neg-
ligible compared to the total query time, highlighting the
efficiency of our parameter-tuning technique.

6.6 Update Performance
Figure 10(a) shows the index construction time of the base-
lines and LibRTS. Note that all the CPU-based spatial indexes
do not support parallel construction. LBVH builds the index
on the GPU by sorting the geometries with their Morton
codes. LibRTS uses the BVH construction provided by OptiX.
Interestingly, although GLIN is the least performant baseline,
it has a significantly lower buildup cost than Boost R-tree
and even LBVH for large datasets. LBVH is 1.4x faster than
LibRTS on USCounty dataset. While LibRTS is 3.7x to 4.5x
faster than LBVH on the larger datasets, indicating OptiX has
a better construction implementation. Figure 10(b) shows the
number of insertions and deletions completed in one second
with different batch sizes. For a 1K batch, LibRTS achieves
1.4M insertions per second and 49.5M deletions per second.
Deletion is fast because it only degenerates rectangles to
exclude them from searches and then refits the IAS. As batch
size increases, the throughput significantly improves due to
better GPU utilization.

6.7 Sensitivity to Updates
Although OptiX supports updating BVH, query performance
can degrade due to suboptimal geometry subdivision com-
pared to building the BVH from scratch. We evaluated the
performance under different update ratios when updating
both the size and position of geometries: (1) Moving rectan-
gles along the x and y axes, (2) Enlarging rectangles up to 10
times, and (3) Shrinking rectangles approaching zero. Using
the largest real-world dataset EuropeParks, we measured
query times with an increasing update ratio.

405

LibRTS: A Spatial Indexing Library by Ray Tracing PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

USCounty
USCensus

USWater
EUParks

OSMLakes
OSMParks

(a) 0.01% Selectivity

10−1

101

103

105

Qu
er

y
Ti

m
e

(m
s)

GLIN
Boost

LBVH
LibRTS

USCounty
USCensus

USWater
EUParks

OSMLakes
OSMParks

(b) 0.1% Selectivity

10−1

101

103

105

Qu
er

y
Ti

m
e

(m
s)

GLIN
Boost

LBVH
LibRTS

USCounty
USCensus

USWater
EUParks

OSMLakes
OSMParks

(c) 1.0% Selectivity

10−1

101

103

105

107

Qu
er

y
Ti

m
e

(m
s)

GLIN
Boost

LBVH
LibRTS

10K 20K 30K 40K 50K
(d) Varying query size on OSMParks dataset

102

103

104

105

106

Qu
er

y
Ti

m
e

(m
s)

GLIN
Boost

LBVH
LibRTS

Figure 8. Query time of 10K Range-Intersects queries by varying selectivity.

1 2 4 8 16 32 64 128 256 512
(a) Number of rays per query (parameter k)

100

101

102

103

Qu
er

y
Ti

m
e

(m
s)

USCounty
USCensus

USWater
EUParks

OSMLakes
OSMParks

Predicated k

USCounty
USCensus

USWater
EUParks

OSMLakes
OSMParks

(b) Running time breakdown

0

20

40

60

80

100

Ti
m

e
Pe

rc
en

ta
ge

 (%
)

k Prediction
Forward Cast

BVH Buildup
Backward Cast

Figure 9.Demonstration of the effectiveness of RayMulticast
on Range-Intersects 50K queries and a selectivity 0.1%. (a) The
changing of query times by varying the number of rays per
query, with red circles indicating the predicted number of
rays by our method; (b) Query time breakdown

Figure 10(c) shows the performance slowdown of an up-
dated BVH compared to a freshly built BVH. Updating 0.02%
of rectangles results in a 44% slowdown for point query and
a 39% slowdown for Range-Contains query, while the Range-
Intersects query slows down by only 3%. Range-Intersects is
less susceptible to updates because the query traverses a
large portion of the BVH, so a less efficient BVH has little
impact on performance. With a 0.2% update ratio, point and
Range-Contains queries experience 2.3x and 2.4x slowdowns
respectively, whereas the Range-Intersects slows down by
1.08x. Interestingly, from 2% to 20% update ratios, query
performance does not further deteriorate. We found that
the number of query results surges when the update ratio
increases from 0.2% to 20%, indicating that the BVH is inten-
sively traversed. Therefore, the heavily updated BVH with
a suboptimal structure does not further deteriorate perfor-
mance.

6.8 Scalability
To evaluate LibRTS’s scalability, we built the index on more
rectangles using Spider to generate synthetic datasets with
uniform and Gaussian (𝜇 = 0.5, 𝜎 = 0.1) distributions [29].
Figure 11(a) shows that query times increase linearly with
more rectangles. The running time includes both searching
the BVH and storing results. Although BVH search time
complexity is logarithmic, more rectangles lead to a linear
increase in result size. For example, 10K point queries on 10M
uniform rectangles return 9.7M query results in 4.2ms, while

50M rectangles return 48.6M results in 20.8ms. Both query
time and result size increase about fivefold. Due to space
limitation, we do not show Range-Contains query but the
result is very similar to the point query. Figure 11(b) shows
the Range-Intersects query for the two synthetic datasets.
The Gaussian datasets have clustered rectangles and queries,
producing more query results and taking longer time. How-
ever, the query times still increase linearly with the number
of rectangles, demonstrating that LibRTS is scalable across
different distributions of spatial datasets.

6.9 Real-world Application: PIP
Figure 12 presents the PIP performance of the three artifacts
for 100K query points. cuSpatial constructs the index based
on query points. Since RayJoin adopts a planar map format,
it requires the construction of the BVH at the line segment
level, which limits RayJoin’s ability to process the full OSM
datasets due to excessive memory consumption.
In contrast, LibRTS is a generic index capable of index-

ing polygons using bounding boxes. Due to less effective
indexing, cuSpatial is significantly slower than the RT-based
approaches. Although RayJoin outperforms LibRTS on the
smaller USCounty dataset, LibRTS surpasses RayJoin on the
three larger datasets, with speedups of 1.9x, 1.1x, and 3.8x,
respectively. Notably, RayJoin’s performance is hindered
by the high cost of BVH construction, which accounts for
up to 98.7% of its total runtime. This inefficiency arises be-
cause decomposing polygons into individual line segments
exponentially increases the number of AABBs, leading to
significant overhead in BVH construction for large datasets.

7 Related Work
This section discusses RT cores for non-rendering workloads.

Neighbor Search Evangelou et al. proposed an inverse
mapping to formulate a radius search as a ray tracing prob-
lem [19]. RTNN extended the radius search to k Nearest
Neighbor (kNN) search with query scheduling optimizations
[74]. TrueKNN further supports kNN search with an arbi-
trary radius [49]. JUNO offers an approximate nearest neigh-
bor search in high-dimensional space [38]. Arkade supports
kNN search in non-Euclidean space [41]. These works focus
on neighbor search and do not support range queries.

406

PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Liang Geng, Rubao Lee, and Xiaodong Zhang

USCounty
USCensus

USWater
EUParks

OSMLakes
OSMParks

(a) Index construction time

10−1

100

101

102

103

104

105
Ti

m
e

(m
s)

Boost
GLIN

LBVH
LibRTS

1K 10K 100K 1M

(b) Batch size

100

101

102

103

Th
ro

ug
hp

ut
 (M

 re
ct

an
gl

es
/s

ec
) Insertion

Deletion

0.02% 0.2% 2.0% 20.0%

(c) Update ratio

0

1

2

3

4

Qu
er

y
Pe

rfo
rm

an
ce

 S
lo

wd
ow

n Point Query
Range Contains Query
Range Intersects Query

Figure 10. Index buildup costs, update rate by varying batch size, and query performance sensitivity to update ratios

10M 20M 30M 40M 50M
(a) Point queries scalability

0

50

100

150

Qu
er

y
Ti

m
e

(m
s)

Uniform Gaussian

10M 20M 30M 40M 50M
(b) Range-intersects queries scalability

0

250

500

750

1000

1250

Qu
er

y
Ti

m
e

(m
s)

Uniform Gaussian

Figure 11. Scalability results. The number of queries is fixed
to 10K for all the queries. The query times are reported by
varying the number of rectangles indexed by LibRTS.

USCounty USCensus USWater EUParks
Datasets

100

101

102

103

104

Ti
m

e
(m

s)

cuSpatial RayJoin LibRTS

Figure 12. The end-to-end execution time of 100K point in
polygon queries

Database Workloads RTIndeX turns RT cores into a B-
tree [26]. RTScan leverages RT cores to accelerate index scans
[40]. cgRX generalizes RTIndeX to achieve updateability
and more performant queries [27]. RT-DBSCAN is an RT-
based DBSCAN software [49]. Meneses et al. explore range
minimum queries [44] on RT cores. These works focus on
1-D data, while spatial data is in 2-D/3-D space.

Spatial WorkloadsWald et al. investigate using RT cores
for tet-mesh point location [61] and unstructured mesh point
location [47]. Laass formulated the PIP query as a ray tracing
problem by transforming polygons into a 3D representation
[32]. RayJoin adapts a different formulation for PIP and sup-
ports the Line Segment Intersection query [22], but it does

not support the point and range queries. LibRTS does not
require formulating queries on a case-by-case basis and sup-
ports updating geometries.
Scientific Workloads Simulating Monte Carlo particle

transport has been explored by Salmon et al. [58]. Maul et
al. proposed utilizing RT cores to accelerate the generation
of synthetic X-ray attenuation images [42]. Zhao et al. sug-
gested leveraging RT cores for particle-based simulations
[72]. These works are remotely related to our research.
Generalization of RT Cores Numerous studies have

been proposed on the generalization of RT cores. Ha et al.
[25] introduced the Tree Traversal Accelerator (TTA), which
extends Ray-Tracing Accelerators (RTA) for general tree
traversal applications such as B-tree searches and radius
search algorithms by modifying the architecture of RTA.
Similarly, Barnes et al. [7] proposed the Hierarchical Search
Unit (HSU) along with a set of new instructions for the HSU
to accelerate a broad class of hierarchical search problems.

8 Conclusion
In this paper, we successfully adapted RT cores to function as
a general-purpose spatial index. Despite the strict limitations
of the programming model, our transformation method ef-
fectively enables RT cores to handle range queries. Addition-
ally, the Ray Multicast technique enhances workload balance
within the existing RT framework. Furthermore, The adop-
tion of Instancing enables geometry insertion and deletion.
This work enhances the accessibility of RT cores for spatial
developers, broadening their utility in spatial data process-
ing and paving the way for future research in repurposing
specialized hardware for diverse computational tasks.

Acknowledgments
We thank the anonymous reviewers for their constructive
comments and suggestions. The work is supported in part
by the U.S. National Science Foundation under grants MRI-
2018627, CCF-2005884, CCF-2210753, CCF-2312507, andOAC-
2310510.

407

LibRTS: A Spatial Indexing Library by Ray Tracing PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

References
[1] Danial Aghajarian and Sushil K. Prasad. 2017. A Spatial Join Algorithm

Based on a Non-uniform Grid Technique over GPGPU. In Proceedings
of the 25th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems (Redondo Beach, CA, USA) (SIGSPA-
TIAL ’17). Association for Computing Machinery, New York, NY, USA,
Article 56, 4 pages.

[2] Varol Akman, Wm Randolph Franklin, Mohan Kankanhalli, and Chan-
drasekhar Narayanaswami. 1989. Geometric computing and uniform
grid technique. Computer-Aided Design 21, 7 (1989), 410–420.

[3] Abdullah Al-Mamun, HaoWu, Qiyang He, JianguoWang, andWalid G
Aref. 2024. A Survey of Learned Indexes for the Multi-dimensional
Space. arXiv preprint arXiv:2403.06456 (2024).

[4] Samuel Audet, Cecilia Albertsson, Masana Murase, and Akihiro Asa-
hara. 2013. Robust and efficient polygon overlay on parallel stream
processors. In Proceedings of the 21st ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems (Orlando,
Florida) (SIGSPATIAL’13). Association for Computing Machinery, New
York, NY, USA, 304–313.

[5] Muhammad A Awad, Saman Ashkiani, Rob Johnson, Martín Farach-
Colton, and John D Owens. 2019. Engineering a high-performance
GPU B-Tree. In Proceedings of the 24th symposium on principles and
practice of parallel programming. 145–157.

[6] Muhammad A Awad, Serban D Porumbescu, and John D Owens. 2022.
A GPU Multiversion B-Tree. In Proceedings of the International Confer-
ence on Parallel Architectures and Compilation Techniques. 481–493.

[7] Aaron Barnes, Fangjia Shen, and Timothy G. Rogers. 2024. Extending
GPU Ray-Tracing Units for Hierarchical Search Acceleration. In 2024
57th IEEE/ACM International Symposium on Microarchitecture (MICRO).
1027–1040.

[8] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard
Seeger. 1990. The R*-tree: An efficient and robust access method
for points and rectangles. In Proceedings of the 1990 ACM SIGMOD
international conference on Management of data. 322–331.

[9] Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali. 2017.
Groute: An asynchronousmulti-GPU programmingmodel for irregular
computations. ACM SIGPLAN Notices 52, 8 (2017), 235–248.

[10] Jon Louis Bentley. 1975. Multidimensional binary search trees used
for associative searching. Commun. ACM 18, 9 (1975), 509–517.

[11] Guy E Blelloch and Magdalen Dobson. 2022. Parallel Nearest Neigh-
bors in Low Dimensions with Batch Updates. In 2022 Proceedings of
the Symposium on Algorithm Engineering and Experiments (ALENEX).
SIAM, 195–208.

[12] Boost. 2024. Boost C++ Libraries. http://www.boost.org/. Last accessed
2024-08-07.

[13] John Burgess. 2020. Rtx on—the nvidia turing gpu. IEEE Micro 40, 2
(2020), 36–44.

[14] CGAL. 2024. Computational Geometry Algorithms Library. https:
//www.cgal.org. Last accessed 2024-08-07.

[15] James H Clark. 1976. Hierarchical geometric models for visible surface
algorithms. Commun. ACM 19, 10 (1976), 547–554.

[16] Ding, Jialin and Minhas, Umar Farooq and Yu, Jia and Wang, Chi and
Do, Jaeyoung and Li, Yinan and Zhang, Hantian and Chandramouli,
Badrish and Gehrke, Johannes and Kossmann, Donald and Lomet,
David and Kraska, Tim. 2020. ALEX: an updatable adaptive learned
index. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data. 969–984.

[17] Ahmed Eldawy and Mohamed F Mokbel. 2015. Spatialhadoop: A
mapreduce framework for spatial data. In 2015 IEEE 31st international
conference on Data Engineering. IEEE, 1352–1363.

[18] Esri. 2023. ArcGIS Hub. Retrieved Feb 21, 2023 from https://hub.arcgis.
com

[19] Iordanis Evangelou, Georgios Papaioannou, Konstantinos Vardis, and
Andreas A Vasilakis. 2021. Fast radius search exploiting ray-tracing

frameworks. Journal of Computer Graphics Techniques Vol 10, 1 (2021),
25–48.

[20] Raphael A Finkel and Jon Louis Bentley. 1974. Quad trees a data
structure for retrieval on composite keys. Acta informatica 4 (1974),
1–9.

[21] Tim Foley and Jeremy Sugerman. 2005. KD-tree acceleration
structures for a GPU raytracer. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware. 15–22.

[22] Liang Geng, Rubao Lee, and Xiaodong Zhang. 2024. RayJoin: Fast
and Precise Spatial Join. In Proceedings of the 38th ACM International
Conference on Supercomputing. 124–136.

[23] Yan Gu, Yong He, Kayvon Fatahalian, and Guy Blelloch. 2013. Effi-
cient BVH construction via approximate agglomerative clustering. In
Proceedings of the 5th High-Performance Graphics Conference. 81–88.

[24] Antonin Guttman. 1984. R-trees: A dynamic index structure for spa-
tial searching. In Proceedings of the 1984 ACM SIGMOD international
conference on Management of data. 47–57.

[25] Dongho Ha, Lufei Liu, Yuan Hsi Chou, Seokjin Go, Won Woo Ro,
Hung-Wei Tseng, and Tor M. Aamodt. 2024. Generalizing Ray Tracing
Accelerators for Tree Traversals on GPUs. In 2024 57th IEEE/ACM
International Symposium on Microarchitecture (MICRO). 1041–1057.

[26] Justus Henneberg and Felix Schuhknecht. 2023. RTIndeX: Exploiting
Hardware-Accelerated GPU Raytracing for Database Indexing. Proc.
VLDB Endow. 16, 13 (sep 2023), 4268–4281.

[27] Justus Henneberg, Felix Schuhknecht, Rosina Kharal, and Trevor
Brown. 2024. More Bang For Your Buck (et): Fast and Space-efficient
Hardware-accelerated Coarse-granular Indexing on GPUs. arXiv
preprint arXiv:2406.03965 (2024).

[28] Tero Karras. 2012. Maximizing parallelism in the construction of
BVHs, octrees, and k-d trees. In Proceedings of the Fourth ACM SIG-
GRAPH/Eurographics Conference on High-Performance Graphics. 33–37.

[29] Puloma Katiyar, Tin Vu, Ahmed Eldawy, Sara Migliorini, and Alberto
Belussi. 2020. Spiderweb: a spatial data generator on the web. In Pro-
ceedings of the 28th International Conference on Advances in Geographic
Information Systems. 465–468.

[30] Timothy L Kay and James T Kajiya. 1986. Ray tracing complex scenes.
ACM SIGGRAPH computer graphics 20, 4 (1986), 269–278.

[31] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis.
2018. The case for learned index structures. In Proceedings of the 2018
international conference on management of data. 489–504.

[32] Moritz Laass. 2021. Point in Polygon Tests UsingHardware Accelerated
Ray Tracing. In Proceedings of the 29th International Conference on
Advances in Geographic Information Systems. 666–667.

[33] Margaret Lawson, William Gropp, and Jay Lofstead. 2022. Exploring
Spatial Indexing for Accelerated Feature Retrieval in HPC. In 2022 22nd
IEEE International Symposium on Cluster, Cloud and Internet Computing
(CCGrid). IEEE, 605–614.

[34] Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. 2020.
LISA: A learned index structure for spatial data. In Proceedings of the
2020 ACM SIGMOD international conference on management of data.
2119–2133.

[35] Guanli Liu, Jianzhong Qi, Christian S Jensen, James Bailey, and Lars
Kulik. 2023. Efficiently learning spatial indices. In 2023 IEEE 39th
International Conference on Data Engineering (ICDE). IEEE, 1572–1584.

[36] Jiesong Liu, Feng Zhang, Lv Lu, Chang Qi, Xiaoguang Guo, Dong Deng,
Guoliang Li, Huanchen Zhang, Jidong Zhai, Hechen Zhang, Yuxing
Chen, Anqun Pan, and Xiaoyong Du. 2024. G-Learned Index: Enabling
Efficient Learned Index on GPU. IEEE Transactions on Parallel and
Distributed Systems 35, 6 (2024), 950–967.

[37] Qiyu Liu, Maocheng Li, Yuxiang Zeng, Yanyan Shen, and Lei Chen.
2024. How Good Are Multi-dimensional Learned Indices? An Experi-
mental Survey. arXiv preprint arXiv:2405.05536 (2024).

408

http://www.boost.org/
https://www.cgal.org
https://www.cgal.org
https://hub.arcgis.com
https://hub.arcgis.com

PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Liang Geng, Rubao Lee, and Xiaodong Zhang

[38] Zihan Liu, Wentao Ni, Jingwen Leng, Yu Feng, Cong Guo, Quan Chen,
Chao Li, Minyi Guo, and Yuhao Zhu. 2024. JUNO: Optimizing High-
Dimensional Approximate Nearest Neighbour Search with Sparsity-
Aware Algorithm and Ray-Tracing Core Mapping. In Proceedings of
the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2 (La Jolla,
CA, USA) (ASPLOS ’24). Association for Computing Machinery, New
York, NY, USA, 549–565.

[39] Lijuan Luo, Martin DF Wong, and Lance Leong. 2012. Parallel imple-
mentation of R-trees on the GPU. In 17th Asia and South Pacific Design
Automation Conference. IEEE, 353–358.

[40] Yangming Lv, Kai Zhang, Ziming Wang, Xiaodong Zhang, Rubao Lee,
Zhenying He, Yinan Jing, and X Sean Wang. 2024. RTScan: Efficient
Scan with Ray Tracing Cores. Proceedings of the VLDB Endowment 17,
6 (2024), 1460–1472.

[41] Durga Keerthi Mandarapu, Vani Nagarajan, Artem Pelenitsyn, and
Milind Kulkarni. 2024. Arkade: k-Nearest Neighbor Search With Non-
Euclidean Distances using GPU Ray Tracing. In Proceedings of the 38th
ACM International Conference on Supercomputing. 14–25.

[42] J Maul, Sarah Said, N Ruiter, and Torsten Hopp. 2021. X-ray synthesis
based on triangular mesh models using GPU-accelerated ray tracing
for multi-modal breast image registration. In Simulation and Synthesis
in Medical Imaging: 6th International Workshop, SASHIMI 2021, Held in
Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021,
Proceedings 6. Springer, 87–96.

[43] Daniel Meister, Shinji Ogaki, Carsten Benthin, Michael J Doyle,
Michael Guthe, and Jiří Bittner. 2021. A survey on bounding vol-
ume hierarchies for ray tracing. In Computer Graphics Forum, Vol. 40.
Wiley Online Library, 683–712.

[44] Enzo Meneses, Cristóbal A Navarro, Héctor Ferrada, and Felipe A
Quezada. 2024. Accelerating range minimum queries with ray tracing
cores. Future Generation Computer Systems 157 (2024), 98–111.

[45] Ke Meng, Jiajia Li, Guangming Tan, and Ninghui Sun. 2019. A pattern
based algorithmic autotuner for graph processing on GPUs. In Pro-
ceedings of the 24th Symposium on Principles and Practice of Parallel
Programming. 201–213.

[46] DuaneMerrill, Michael Garland, and AndrewGrimshaw. 2012. Scalable
GPU graph traversal. ACM Sigplan Notices 47, 8 (2012), 117–128.

[47] Nate Morrical, Ingo Wald, Will Usher, and Valerio Pascucci. 2020.
Accelerating unstructured mesh point location with RT cores. IEEE
transactions on visualization and computer graphics 28, 8 (2020), 2852–
2866.

[48] Moin Hussain Moti, Panagiotis Simatis, and Dimitris Papadias. 2022.
Waffle: A Workload-Aware and Query-Sensitive Framework for Disk-
Based Spatial Indexing. Proceedings of the VLDB Endowment 16, 4
(2022), 670–683.

[49] Vani Nagarajan, DurgaMandarapu, andMilind Kulkarni. 2023. Rt-knns
unbound: Using RT cores to accelerate unrestricted neighbor search.
In Proceedings of the 37th International Conference on Supercomputing.
289–300.

[50] NVIDIA 2018. NVIDIA TURING GPU ARCHITECTURE. NVIDIA.
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-
visualization/technologies/turing-architecture/NVIDIA-Turing-
Architecture-Whitepaper.pdf.

[51] NVIDIA 2020. NVIDIA AMPERE GA102 GPU ARCHITEC-
TURE. NVIDIA. https://images.nvidia.com/aem-dam/en-
zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-
Architecture-Whitepaper-V1.pdf.

[52] NVIDIA. 2024. cuSpatial. https://docs.rapids.ai/api/cuspatial/stable/.
Last accessed 2024-08-07.

[53] NVIDIA. 2024. NVIDIA OptiX 8.0 – Programming Guide. https:
//raytracing-docs.nvidia.com/optix8/guide/index.html. Last accessed
2024-08-07.

[54] Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2023. Physically
based rendering: From theory to implementation. MIT Press.

[55] Sushil K Prasad, Michael McDermott, Xi He, and Satish Puri. 2015.
GPU-based Parallel R-tree Construction and Querying. In 2015 IEEE
International Parallel and Distributed Processing Symposium Workshop.
IEEE, 618–627.

[56] Jianzhong Qi, Guanli Liu, Christian S Jensen, and Lars Kulik. 2020.
Effectively learning spatial indices. Proceedings of the VLDB Endowment
13, 12 (2020), 2341–2354.

[57] Steven M Rubin and Turner Whitted. 1980. A 3-dimensional repre-
sentation for fast rendering of complex scenes. In Proceedings of the
7th annual conference on Computer graphics and interactive techniques.
110–116.

[58] Justin Salmon and Simon McIntosh-Smith. 2019. Exploiting hardware-
accelerated ray tracing for Monte Carlo particle transport with
OpenMC. In 2019 IEEE/ACM Performance Modeling, Benchmarking
and Simulation of High Performance Computer Systems (PMBS). IEEE,
19–29.

[59] Jaewoo Shin, Ahmed R Mahmood, and Walid G Aref. 2019. An inves-
tigation of grid-enabled tree indexes for spatial query processing. In
Proceedings of the 27th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems. 169–178.

[60] Darius Šidlauskas, Simonas Šaltenis, Christian W Christiansen, Jan M
Johansen, and Donatas Šaulys. 2009. Trees or grids? Indexing moving
objects in main memory. In Proceedings of the 17th ACM SIGSPATIAL
international conference on Advances in Geographic Information Systems.
236–245.

[61] Ingo Wald, Will Usher, Nathan Morrical, Laura Lediaev, and Valerio
Pascucci. 2019. RTX Beyond Ray Tracing: Exploring the Use of Hard-
ware Ray Tracing Cores for Tet-Mesh Point Location. High Performance
Graphics (Short Papers) 7 (2019), 13.

[62] Congying Wang, Jia Yu, and Zhuoyue Zhao. 2023. GLIN: A (G) eneric
(L) earned (In) dexing Mechanism for Complex Geometries. In Proceed-
ings of the 11th ACM SIGSPATIAL International Workshop on Analytics
for Big Geospatial Data. 1–12.

[63] Hao Wang, Liang Geng, Rubao Lee, Kaixi Hou, Yanfeng Zhang, and
Xiaodong Zhang. 2019. SEP-graph: finding shortest execution paths for
graph processing under a hybrid framework on GPU. In Proceedings of
the 24th Symposium on Principles and Practice of Parallel Programming.
38–52.

[64] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy
Riffel, and John D Owens. 2016. Gunrock: A high-performance graph
processing library on the GPU. In Proceedings of the 21st ACM SIGPLAN
symposium on principles and practice of parallel programming. 1–12.

[65] Yiqiu Wang, Rahul Yesantharao, Shangdi Yu, Laxman Dhulipala, Yan
Gu, and Julian Shun. 2022. ParGeo: A Library for Parallel Computa-
tional Geometry. In 30th Annual European Symposium on Algorithms
(ESA 2022) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 244), Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, andGrzegorz
Herman (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, 88:1–88:19.

[66] Yiqiu Wang, Shangdi Yu, Laxman Dhulipala, Yan Gu, and Julian Shun.
2022. Pargeo: A library for parallel computational geometry. In Proceed-
ings of the 27th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. 450–452.

[67] Turner Whitted. 1980. An improved illumination model for shaded
display. Commun. ACM 23, 6 (jun 1980), 343–349.

[68] Mengbai Xiao, Hao Wang, Liang Geng, Rubao Lee, and Xiaodong
Zhang. 2019. Catfish: Adaptive RDMA-enabled r-tree for low latency
and high throughput. In 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 164–175.

[69] Mengbai Xiao, Hao Wang, Liang Geng, Rubao Lee, and Xiaodong
Zhang. 2022. An RDMA-enabled In-memory Computing Platform
for R-tree on Clusters. ACM Transactions on Spatial Algorithms and

409

https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://docs.rapids.ai/api/cuspatial/stable/
https://raytracing-docs.nvidia.com/optix8/guide/index.html
https://raytracing-docs.nvidia.com/optix8/guide/index.html

LibRTS: A Spatial Indexing Library by Ray Tracing PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

Systems (TSAS) 8, 2 (2022), 1–26.
[70] Simin You, Jianting Zhang, and Le Gruenwald. 2013. Parallel spatial

query processing on gpus using r-trees. In Proceedings of the 2Nd ACM
SIGSPATIAL international workshop on analytics for big geospatial data.
23–31.

[71] Jianting Zhang and Simin You. 2013. High-performance quadtree
constructions on large-scale geospatial rasters using GPGPU parallel
primitives. International Journal of Geographical Information Science
27, 11 (2013), 2207–2226.

[72] Shiwei Zhao, Zhengshou Lai, and Jidong Zhao. 2023. Leveraging
ray tracing cores for particle-based simulations on GPUs. Internat. J.
Numer. Methods Engrg. 124, 3 (2023), 696–713.

[73] Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. 2008. Real-time
kd-tree construction on graphics hardware. ACM Transactions on
Graphics (TOG) 27, 5 (2008), 1–11.

[74] Yuhao Zhu. 2022. RTNN: accelerating neighbor search using hardware
ray tracing. In Proceedings of the 27th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. 76–89.

410

PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Liang Geng, Rubao Lee, and Xiaodong Zhang

A Artifact Evaluation
A.1 Availability
The user can either download the artifact evaluation pack-
age from Zenodo https://doi.org/10.5281/zenodo.14209767 or
Github https://github.com/RTSpatial/PPoPPAE. If you clone
the repository on GitHub, do not forget to use “–recursive”
option to download the dependencies.

A.2 Hardware Requirements
To run the experiments, you need a machine equipped with
an NVIDIA RTX Series GPU, ideally an RTX 3090 (as used
in the paper). The GPU should have at least 24 GB of VRAM
to run all experiments successfully. Non-RTX GPUs, such
as the A100 or H100, should not be used to reproduce the
results, as they don’t have RT cores. Additionally, the ma-
chine should have high-performance CPUs for evaluating
CPU-based baselines and sufficient RAM to load the datasets
(64 GB should be adequate).

Note that we do not explicitly specify which GPU to use
in the code, so the first available GPU will be used in the
experiments. If your RTXGPU is not the first one, you should
make it accessible to the benchmark program by setting
“export CUDA_VISIBLE_DEVICES=x”, where x is the index
of your RTX GPU.

A.3 Software Requirements
The evaluation scripts are developed for Linux only. In addi-
tion, the user should make sure the following programs are
available.

• bash
• wget
• unzip
• tar
• md5sum
• gcc (>=7.5)
• Conda (>=22.11)
• CMake (>=3.27)
• CUDA (>=12)
• NVIDIA Driver (>=535)

A.4 Evaluation
If the above software requirements are met, simply navigate
to the root of the codebase and execute “./runme.sh”. This
script will build and install dependencies, download datasets,
build and run baselines and finally, draw the figures in the
paper. Once the script completes, Figures 7–13 will be gen-
erated and can be found in “figures” folder within the root
directory of the codebase.

Since this paper evaluates both CPU and GPU-based spa-
tial libraries and your machine with a GPU may not have a
powerful CPU, so you want to run the CPU-based baselines
on a different machine. You can control whether to evaluate
CPU/GPU-based baselines by setting variables “AE_RUN_CPU”

and “AE_RUN_GPU” in “common.sh”. Additionally, you may
also set “AE_BUILD_GPU” to ‘OFF‘ if your machine does
not have installed CUDA.

411

https://doi.org/10.5281/zenodo.14209767
https://github.com/RTSpatial/PPoPPAE

	Abstract
	1 Introduction
	2 Background
	2.1 Spatial Index
	2.2 Ray Tracing
	2.3 Acceleration Structure
	2.4 Programming Model for RT Cores

	3 From Spatial Query to Ray-tracing
	3.1 Point Query
	3.2 Range Query with Contains Predicate
	3.3 Range Query with Intersects Predicate
	3.4 Ray Multicast for Load Balancing

	4 Update Spatial Index
	4.1 Insert
	4.2 Update and Delete

	5 Implementation and Interface for Users
	6 Evaluation
	6.1 Evaluation Setup
	6.2 Point Query
	6.3 Range Query with Contains Predicate
	6.4 Range Query with Intersects Predicate
	6.5 Effectiveness of Load Balacing
	6.6 Update Performance
	6.7 Sensitivity to Updates
	6.8 Scalability
	6.9 Real-world Application: PIP

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Artifact Evaluation
	A.1 Availability
	A.2 Hardware Requirements
	A.3 Software Requirements
	A.4 Evaluation

