
HYPHA: A Framework based on Separation of Parallelisms to
Accelerate Persistent Homology Matrix Reduction

Simon Zhang
1
, Mengbai Xiao

1
, Chengxin Guo

1,2
, Liang Geng

1,3
, Hao Wang

1
, Xiaodong Zhang

1

1
Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA

2
School of Information, Renmin University of China, China

3
Department of Computer Science and Engineering, Northeastern University, China

{zhang.680, xiao.736, guo.1384, geng.161, wang.2721}@osu.edu, zhang@cse.ohio-state.edu

ABSTRACT
Persistent homology (PH) matrix reduction is an important tool for

data analytics in many application areas. Due to its highly irregular

execution patterns in computation, it is challenging to gain high

efficiency in parallel processing for increasingly large data sets.

In this paper, we introduce HYPHA, a HYbrid Persistent Ho-

mology matrix reduction Accelerator, to make parallel processing

highly efficient on both GPU and multicore. The essential founda-

tion of our algorithm design and implementation is the separation

of SIMT and MIMD parallelisms in PH matrix reduction compu-

tation. With such a separation, we are able to perform massive

parallel scanning operations on GPU in a super-fast manner, which

also collects rich information from an input boundary matrix for

further parallel reduction operations on multicore with high effi-

ciency. The HYPHA framework may provide a general purpose

guidance to high performance computing on multiple hardware

accelerators.

To our best knowledge, HYPHA achieves the highest perfor-

mance in PH matrix reduction execution. Our experiments show

speedups of up to 116x against the standard PH algorithm. Com-

pared to the state-of-the-art parallel PH software packages, such

as PHAT and DIPHA, HYPHA outperforms their fastest PH matrix

reduction algorithms by factor up to ∼2.3x.

CCS CONCEPTS
• Mathematics of computing → Mathematical software per-
formance; •Computingmethodologies→Parallel algorithms;
•Computer systems organization→Heterogeneous (hybrid)
systems.

1 INTRODUCTION
It is important to find and understand the shape of data in multiple

dimensions, which is a major research theme of Topological Data

Analysis (TDA) [10]. In TDA, the concept of persistent homology

can be applied. In addition to providing topological, or qualitative

understanding of data, it offers metrically stable and efficiently com-

putable measurements with comparative and analytical insights.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6079-1/19/06. . . $15.00

https://doi.org/10.1145/3330345.3332147

Figure 1: (a) A simplicial 2-dimension complex composed
of 6 simplices. The points 0, 1, 2 are 0-simplices, the line-
segments 3, 4, 5 are 1-simplices, and the triangle 6 is a 2-
simplex. (b) The corresponding boundarymatrix. In the ma-
trix, a column representing a simplex is encoded by the sim-
plices in its boundary, e.g., the triangle 6 has the boundary
composed of line-segments 3, 4, and 5.

Because of its rigorous mathematical foundation and computing fea-

sibility, this type of data analytics has been widely used in various

areas, including sensor networks [14], bioinformatics [13], manifold

learning [33] [35], deep learning [26] and many others [34].

As data analytics tasks have become increasingly intensive in

both scale and computing complexity, researchers havemade efforts

to develop fast persistent homology algorithms. There are several

open source software packages of persistent homology, e.g. JavaPlex

[1], PHAT [6], and Dionysus [32], DIPHA [5], Ripser [3], and Eirene

[25]. The core algorithm of these software packages is the matrix

reduction on simplices. Fig. 1 (a) shows a simplicial 2-dimension

complex; and accordingly, Fig. 1 (b) shows its boundary matrix. Fig.

1 also illustrates how to construct a boundary matrix ∂ for a simpli-

cial complex. Another rule for construction of a boundary matrix

is that a column representing a simplex can only be encoded by the

simplices with smaller column indices. As a result, the boundary

matrix is an upper triangular matrix. For any column j of ∂, low(j)
is defined as the greatest row index i that ∂[i, j] is nonzero. In the

case that column j is composed of all zeros, low(j) is -1. We will

use low(j) and low(∂[j]) interchangeably. In Fig. 1 (b), we can find

low(∂[0]), low(∂[1]), low(∂[2]) are -1, low(∂[3]) and low(∂[4]) are
2, low(∂[5]) is 1, and low(∂[6]) is 5. The matrix reduction is to add

column i to column j , if low(i) = low(j) and i < j . Here, the column

addition executes the exclusive or (XOR) on corresponding entries

of two columns. The matrix reduction will end once the low(·) is
injective on the nonnegatives, i.e., for all i and j that low(i) , −1
and low(j) , −1, if i,j, then low(i) , low(j).

A basic sequential matrix reduction algorithm (more details in

Sec. 2.1) is straightforward and easy to implement. With a set of

69

https://doi.org/10.1145/3330345.3332147

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA S. Zhang et al.

Figure 2: (a): Standard matrix reduction on the example in Fig. 1, where pivots (2,3), (1,4), and (5,6) are found during the
execution. (b) With the clearing lemmas 1 and 2, the algorithm can zero column 5 of the boundary matrix after finding (5,6) as
a pivot. (c) With the compression lemma 3, the algorithm can zero rows 3 and 4 after finding pivots (2,3) and (1,4), respectively.

optimizations [6], such as cache utilization, adopting sparse matrix

format (e.g., Compressed Sparse Column (CSC)), using the binary

index tree [21], and others, the sequential algorithm is efficient

on CPU, especially for medium sized datasets (under 1 million

simplices).

Although the sequential execution on a powerful single core

CPU can leverage CPU high clock rate, large cache for fast data

accesses, and zero synchronization delay, the parallel and scalable

PH design is highly desirable. As datasets become increasingly large,

PH matrix reduction must be processed in parallel with advanced

architecture for high performance. As Moore’s Law [36] along with

the Dennard’s Scaling Law [18] are ending due to physical limits, to

further improve performance, computation needs to be accelerated

by additional advanced hardware devices, such as GPU. However,

existing parallel PH matrix reduction algorithms (Sec. 2.3), e.g.,

spectral sequence algorithm [20] and chunk algorithm [4], have the

following structural issues that may lead to suboptimal performance

and hence have hindered their wide usage in practice.

First, it is challenging to parallelize the matrix reduction, as

the algorithm itself is highly dependent in column additions. Only

the columns with the same low values can be added, and such

results can be obtained only during the execution at runtime. Sec-

ond, the additions on real-world datasets are highly skewed. For

all the datasets used in this work, we have observed 9.57% - 62.47%

columns do not have any additions, while 0.7% - 20.6% columns

get 50% column additions. However, existing parallel algorithms do

not take the irregularity into implementation consideration. With-

out distinguishing different computing natures of columns, these

parallel algorithms cannot process matrix reduction in a balanced

manner. Lastly but most importantly, we observe that existing par-

allel algorithms cannot fully utilize the power of two effective PH

optimizations, i.e., clearing [4, 11] and compression [4] (Sec. 2.2),

potentially producing a large number of unnecessary column ad-

ditions, and not fully exploiting SIMT (single instruction, multiple

threads) and MIMD (multiple instructions, multiple data) paral-

lelisms in the algorithms on advanced computing systems.

To address these issues, we propose HYPHA, a framework of

separation of SIMT and MIMD parallelisms to accelerate persistent

homologymatrix reduction.We propose a read-only scanning phase

of the boundary matrix to quickly identify 0-addition columns and

collect rich information for the following matrix preprocessing and

parallel matrix reduction. With that, we can unleash the power

of clearing and compression to simplify the boundary matrix to

a smaller submatrix and then resolve the imbalance problem in

parallel matrix reduction.We separate SIMT andMIMD parallelisms

of matrix reduction and implement each phase onto their best-fit

hardware devices, i.e., the parallel scanning phase on GPU (SIMT),

the parallel column addition on multicore (MIMD), and the parallel

clearing on GPU (SIMT) and compression on multicore (MIMD).

Our contributions are three folds:

• We provide an anatomy of PH matrix reduction algorithms based

on large datasets, which provides insights into the separation of

two types of parallelisms and computation bottlenecks in order

to achieve high performance.

• We propose HYPHA, a framework based on separation of SIMT

and MIMD parallelisms to accelerate PH matrix reduction. It

includes a novel and effective scanning phase on GPU, a balanced

parallel column addition phase on multicore, and an enhanced

clearing and compression phase on both hardware devices.

• We carry out the experiments on a HPC cluster with GPUs and

compare HYPHAwith two state-of-the-art PH software packages,

i.e., PHAT and DIPHA, on a set of real-world datasets. To our best

knowledge, HYPHA achieves the highest performance compared

with other solutions for PH matrix reductions at low cost.

2 BACKGROUND
2.1 Standard Matrix Reduction Algorithm
Alg. 1 shows the "original" or standard matrix reduction algorithm.

The algorithm processes the matrix column by column, from the

left to the right. Once a column R[j] is nonzero and low(R[j]) is
found modified in the lookup table L (not the initial value -1), the

algorithm knows there is another column R[i] on the left of R[j] and

low(R[i]) is equal to low(R[j]), and then adds R[i] to R[j]. Otherwise,
the algorithm updates the low(R[j])-th position of the lookup table

with the column number j, if R[j] is nonzero.

Fig. 2 (a) illustrates the process of matrix reduction on the bound-

ary matrix of Fig. 1 (b). The algorithm checks and skips columns 0,

1, and 2 one by one. On columns 3, the algorithm sets L[2] = 3, but

doesn’t change the boundary matrix. On column 4, the algorithm

finds low(R[4]) is 2 and L[2] is 3, and thus adds column 3 to col-

umn 4. The column addition updates the column 4 in the partially

reduced boundary matrix, as shown in the left sub-figure of Fig. 2

(a). After that low(R[4]) is changed to 1 and L[1] is set to 4. The

algorithm then checks column 5, and finds low(R[5]) is 1 and L[1]

is 4. The algorithm adds column 4 to column 5, zeroing column 5, as

shown in the right sub-figure of Fig. 2 (a). After processing column

6, there is no column which low position can be further changed.

The reduction is finished and the matrix is fully reduced.

70

HYPHA ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

Algorithm 1 The original matrix reduction algorithm

1: function (input: ∂, an n × n matrix)

2: R← ∂ ▷ let R[i] denote the ith column of matrix R
3: L← [-1....-1]; L of length n

4: for j= 0... n-1 do
5: while R[j] , 0 and L[low(R[j])] , −1 do
6: R[j] ← R[j] + R[L[low(R[j])]];

7: if R[j] , 0 then L[low(R[j])] ← j

8: return R

Alg. 1 returns a reduced boundary matrix. In computing PH of

the given simplicial complex, we only pay attention to the "pivots"

of the reduced matrix. These pivots correspond to persistence pairs

of persistent homology [12]. A pivot is defined as the entry (low(j),
j) for any column j in the reduced matrix. In Fig. 2 (a), the pivots are

(2,3), (1,4), and (5,6). The matrix reduction algorithms may generate

different reduced boundary matrices for the same input, but the

pivots are identical. We will call a column j of a partially reduced

boundary matrix with (low(j),j) a pivot fully reduced.

2.2 Clearing and Compression
There are two effective optimizations for PH matrix reduction,

clearing and compression. Clearing [4, 11] can set a column to zero.

The original clearing lemma is stated as follows:

Lemma 1. If (i,j) is a pivot (low(j), j) of a fully reduced column j,
then column i can be zeroed. [11]

The intuition behind the original clearing lemma (Lemma 1)

is that every index is either a creator or destroyer index (each

simplex either creates or destroys/zeros a homology class). Pivots

(c,d) always have c, a creator index and d, a destroyer index. Thus

if a column index is a creator index, it cannot have a pivot in its

column and thus must be a zero column in the fully reduced matrix.

Lemma 1 has an extension as follows:

Lemma 2. For any nonzero column j, not necessarily fully reduced,
column low(j) can be zeroed. [4]

We will use Lemma 2, the extension of Lemma 1 when referring

to clearing. Clearing always zeroes the column low(j) on the left

of column j of one dimension smaller. Fig. 2 (b) illustrates how

the algorithm processes the boundary matrix with clearing. For

applying clearing, the matrix reduction needs to process columns

from higher dimension simplices to lower dimension simplices [11].

In Fig. 2 (b), the algorithm starts from the highest simplex, i.e., 2-

simplex (column 6), and finds the pivot (5,6). With clearing (Lemma

2), the algorithm directly zeros column 5. After that, the algorithm

processes 1-simplices (columns 3, 4, 5) from the left to the right, and

finds column 4 can be reduced by adding column 3. The algorithm

stops after processing the 0-simplices (columns 0, 1, 2), which are

zero columns. Without clearing (Fig. 2 (a)), the algorithm calls the

column addition twice, one on column 4 and the other on column

5. With clearing, the algorithm doesn’t need the column addition

on column 5.

Compression [4] is another technique to optimize PH matrix

reduction, which can set a row to zero with the lemma as follows:

Lemma 3. For any given pivot (i,j), row j can never have a pivot in
it. Thus row j can be zeroed. [4]

The reasoning behind compression is similar to clearing. How-

ever, compression zeros a row of index higher dimension instead

of lower dimension. Fig. 2 (c) shows how the algorithm processes

the boundary matrix with compression (Lemma 3). When the algo-

rithm identifies (2,3) is a pivot, it zeros row 3. And after the column

addition on row 4, the algorithm finds (1,4) is a pivot and then zeros

row 4.

Clearing and compression are not fully utilized in existing PH

software packages. First, clearing (lemma 2) can be applied in a

column-wise parallel manner, without dimension ordering restric-

tion, and without column addition dependency. This technique

has not been used in existing software implementations, including

in existing parallel algorithms. The sequential algorithm in Fig.

2(b), as mentioned in [11] is the way clearing is applied in spectral

sequence, see 2.3, for example.

Second, a new study [30] introduces a new lemma that can be

used for compression as follows:

Lemma 4. If a column j has an entry (i,j) that is a leftmost nonzero
in its row i, then column j must eventually have a pivot. [30]

In Fig. 2(c), compression sets column 4 to zero after finding

the pivot (1,4) with one column addition. However, Lemma 4 tells

us the algorithm can directly zero row 4 without identifying the

pivot, because of the leftmost non-zero entry (1,4)
1
. This lemma

provides us with an opportunity to zero rows as early as possible

and eliminate more unnecessary column additions. However, it has

not been considered by existing PH software packages.

2.3 Spectral Sequence Algorithm
Of the parallel algorithms for PH matrix reduction, Spectral Se-

quence [39] is considered as basic. Since the boundary matrix is

the upper triangular matrix, if the N × N boundary matrix is di-

vided into multiple M × M tiles/blocks (M < N), the tiles on the

same diagonal can be processed in parallel. As shown in Fig. 3 (a),

the boundary matrix is divided into ten 2 × 2 tiles. Because each

tile only depends on those tiles on the left and below, Spectral Se-

quence only needs four rounds to finish the process. In each tile,

the algorithm can process columns following the standard matrix

reduction algorithm, with or without clearing and compression. If

the low(j) of column j is found beyond the range of the current tile,

the algorithm will continue processing column j with the upper tile

in the next round.

Having inspired by the studies of wavefront loops [7, 27, 43], we

identify several limitations for Spectral Sequence-based PH matrix

reduction. First, the number of tiles that can be processed in parallel

decreases from the first round to the last round, leading to load

imbalance when scheduling one thread per tile as PHAT [6] does.

Second, in processing PH boundary matrices, the load imbalance is

also a concern. Because of the nature of sparsity and dependency,

the numbers of column additions between tiles are highly skewed

and cannot be determined in advance. Therefore, a new scheduling

1
This is because no column addition can zero a leftmost non-zero entry, e.g., (1,4) in

this case. The non-zero column (column 4) eventually has a pivot, and it can trigger

compression due to Lemma 3.

71

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA S. Zhang et al.

Figure 3: Two examples of Spectral Sequence-based PH ma-
trix reduction on the boundary matrix in Fig. 1. The bound-
ary matrix is divided into multiple tiles, and the tiles on the
same diagonal can be processed in parallel. (a) uses 2 × 2
tiles, and four rounds are needed for the matrix reduction.
(b) uses 6 × 6 tiles 2, and two rounds are needed.

0-adds. non-tail-adds. tail-adds.

Dataset # of cols. (% of cols.) (% of cols.) (% of cols.)

high_genus_extended 2.76 × 106 48.78 49.52 1.70

mumford 2.37 × 106 9.57 81.85 8.58

torus 5.58 × 105 50.03 49.27 0.70

18-sphere 1.05 × 106 50.00 29.40 20.60

saddle_orbit_64 2.05 × 106 62.47 32.70 4.83

Table 1: The number of columns of various data sets and
their addition distribution.

mechanism is needed for load balance. Most importantly, such a

tile-based parallel pattern may limit the power of clearing and

compression. Assuming the boundary matrix is divided into 6 × 6

tiles, as shown in Fig. 3 (b) , there are three tiles in total. Two tiles

are processed in the first round and one in the second round. The

algorithm can only set column 5 to zero by applying clearing in the

tile processed in the second round; while at that moment, column

5 has been set to zero in the first round by calling column addition.

In this case, the power of clearing is not utilized. Although PHAT

[6] can mitigate it by processing each tile multiple times and one

dimension at each time (from higher to lower) for enabling clearing,

this method aggravates the load imbalance with additional memory

access overhead. Therefore, a new parallel framework is needed to

unleash the power of clearing too.

3 ANATOMY OF PH MATRIX REDUCTION
The running time of a PH matrix reduction is dominated by col-

umn additions. To better understand its computational nature, we

analyze the column-wise addition distribution for various datasets

in the standard algorithm. We count the number of additions for

all columns, and with a thorough analysis, we want to understand

column addition patterns throughout the matrix.

We look into the torus dataset from the PHAT benchmark datasets

[6] as an example. After the PH matrix representing the torus is

fully reduced and all statistical numbers have been collected, we

sort the columns according their column-wise XORs and accumu-

late the number of XORS (column additions). The result is presented

in Fig. 4(c), where the x-axis is the column fraction and the y-axis is

the accumulated addition fraction. The curve with marks represents

2
we only draw one 6 × 6 tile to save the limited page space.

the columns unchanged throughout the calculation (column frac-

tion from 0 to 0.5). The solid curve represents the top columns (by

column addition count) taking up 50% of all additions; the dashed

curve represents the remaining columns. From the experiment, two

facts are observed when computing persistence pairs for this torus:

1) about half columns are inherently stable, and 2) half of all addi-

tions are performed over a very small portion of columns. Thus, we

define tail-addition columns to be the smallest set of columns that

account for more than 50% of the column additions needed to reduce

the boundary matrix. Furthermore, we define 0-addition columns

to be columns that do not require column additions. We thus have

a partition of three types of columns as 0-addition columns, non-
tail-addition columns, and tail-addition columns, respectively. The

tail phenomenon is an example of a Pareto principle [37] (e.g. 50%

of total column additions are due to 1.7% of the columns). The tail

phenomenon is also observed in daily Google production systems,

where high latency service to a small percentage of customers could

dominate overall service performance at large scale [17].

To investigate if the observed characteristics are general, the

experiments are extended to other datasets. Some of the datasets

are also from the PHAT benchmark datasets and the others are

topologically synthesized. The statistical results are also shown

in Figure 4 (a), (b), (d), and (e) and the numbers are presented in

Table 1. We observe that for most datasets, there are ∼ 50% 0-

addition columns (except that mumford presented in Figure 4 (b)

contains only 9.57% 0-addition columns). Furthermore, half of all

additions concentrate on at most ∼20% columns. In an extreme case,

the tail-additions happen on only 0.7% columns (torus).
The observed facts shed light upon the structural differences of

PH matrix additions. The large portion of 0-addition columns can

be massively processed in SIMT mode on GPU. A small percentage

of tail-addition columns indicates that sequential algorithms on a

powerful single core are still attractive. For the remaining non-tail-

additions, MIMD processing onmulti-core can be very efficient. Our

anatomy study has motivated us to separate additions of various

types of columns as a foundation to achieve high performance.

Topological origins of tail-addition columns: The computing

for tail-addition columns is the bottleneck to PH matrix reduction.

We find that most tail-addition columns (see table 2) are creator

columns (columns that are zero when fully reduced and topolog-

ically correspond to simplices that generate cycles, e.g. column

5 in Figure 1). This is because the columns that usually take the

most time to reduce are columns that need to be completely zeroed,

requiring many column additions. This also explains the power of

the clearing lemma, since it can be used to zero all paired creator

columns.

Besides using the clearing lemma, tail-addition columns can be

handled by employing compression (Sec. 4.3), introducing paral-

lelism (Sec. 4.4), computing cohomology for special cases (Sec. 4.3),

or using efficient data structures such as bit-tree-pivot column from

PHAT[6] (lowering instruction counts). We are able to employ all

of these techniques in HYPHA.

4 THE HYPHA FRAMEWORK
In this section, we introduce our framework, HYPHA, a HYbrid

Persistent Homology matrix reduction Accelerator. We first present

72

HYPHA ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Ac
c.

 A
dd

iti
on

 F
ra

ct
io

n

Column Fraction
(a) high_genus_extended

0-additions non-tail-additions tail-additions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
Column Fraction

(b) mumford

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
Column Fraction

(c) torus

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
Column Fraction

(d) 18-sphere

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
Column Fraction

(e) saddle_orbit_64

Figure 4: The column addition distribution in various datasets. high_genus_extended is from the PHAT benchmark datasets.
mumford comes from a 4-skeleton of the Rips filtration with 50 random points from the Mumford dataset [29]. torus comes
from an alpha shape filtration [22] defined on 10,000 points sampled from the torus embedded in R3. 18-sphere comes from
a synthesized simplicial complex of a 19-dimensional single simplex with its interior removed. saddle_orbit_64 comes from a
cubical complex generated from a 3D image using a 64

3 sub-region.

Dataset # of tail-adds. cols. (% of tail-adds. cols. that are creator)

high_genus_extended 4.69 × 104 90.98

mumford 2.03 × 105 100.00

torus 3.92 × 103 99.97

18-sphere 2.16 × 105 100.00

saddle_orbit_64 9.89 × 104 99.98

Table 2: The topological origin of tail-adds. columns, show-
ing the percentage of tail-adds. columns that are creator
columns

an overview of HYPHA by comparing it with existing work, and

then we go over each phase of HYPHA in detail.

4.1 Overview
Fig. 5 compares HYPHA with existing work in the format of a finite

state machine. Fig. 5 (a) introduces the framework in existing PH

software packages, which is algorithm independent, being either

sequential or parallel. The framework starts from the column ad-

ditions of standard algorithm to update the boundary matrix and

the lookup table. Once the lookup table is updated, clearing and/or

compression is triggered to zero corresponding columns and rows

in the boundary matrix. This process stops at the column addition

phase when there is no column that can be changed.

Figure 5: The frameworks of existing work and HYPHA.

In contrast, the HYPHA framework includes three phases involv-

ing the states in Fig. 5 (b). The GPU-scan is the start phase to find

0-addition columns and leftmost 1s. Due to the SIMT execution

pattern in this phase, we implement it on GPU in a highly efficient

manner. Following that is the clearing and compression phase on

multicore CPU to eliminate rows and columns labeled by GPU on

multicore. Different with the existing framework that starts from

the column additions of the standard algorithm in order to trigger

clearing and compression, our framework identifies indices to clear

and compress immediately from GPU scan for leveraging its results.

With the identified leftmost 1s and the 0-addition columns, the

clearing and compression phase can potentially eliminate much

more unnecessary additions (details in Sec. 4.3). The third phase

is the matrix reduction phase. This is reduction of the submatrix

determined after the clearing and compression phase. In this phase,

we can enhance the parallel spectral sequence algorithm on mul-

ticore with a multi-level scheduling mechanism for load balance

(details in Sec. 4.4).

4.2 GPU-scan Phase
By observing the standard algorithm Alg. 1, we determine that a

column is a 0-addition column if its lowest 1 is the leftmost 1 in its

row, since there is no column to the column’s left that can be added

to it. Furthermore, a leftmost 1 implies its column cannot be zeroed,

even if that column is reducible in the algorithm (Lemma 4). This

provides us with an opportunity to apply compression on multicore

later.

Searching the leftmost 1s is challenging. Launching individual
threads for each row and recording the first-met 1 with multi-

threading on CPU are hardly expected to be efficient since the scan

operation itself is simple yet the scale is massive. Compared to

millions of columns in a boundary matrix, commonly only tens

of CPU cores can be found in a machine. Such a SIMT execution

model [44] motivates us to employ GPU accomplishing the task,

on which the number of cores is two orders of magnitude higher.

It is worth noting that due to sparsity, a boundary matrix is

usually stored in a CSC format. To efficiently find out leftmost 1s at
each row over CSC, the GPU-scan algorithm in Alg. 2 includes three

steps. In our algorithm, a column that is deemed fully reduced by

GPU-scan is defined as a stable column; otherwise, it is an unstable
column. Thus, stable columns are 0-addition columns and columns

with all zeros are stable (including columns zeroed by clearing). In

Alg. 2, we use stable to mark the columns identified as stable and

the unstable column indices are aggregated in u. Alg. 2 also sets up
two arrays for the following phase, i.e., Left that stores the column

indices of leftmost 1s, indexed by row, and Lookup as the lookup

table that records the pivots of stable columns.

Alg. 2 initializes global data structures on the GPU side, moves

the boundary matrix from CPU to GPU, and launches the kernels

73

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA S. Zhang et al.

Algorithm 2 GPU-scan algorithm

1: procedure GPU_Scan(∂)
2: Left← {∞}
3: Lookup← {−1}
4: stable← {0}
5: u← ∅
6: n ← ∂.num_cols

7: dim3 blks(BLK_SIZE, 1, 1)

8: dim3 grds(ceil_div(n, BLK_SIZE), 1, 1)

9: set_leftmost<<<grds, blks>>>(∂, Left, stable)
10: set_lookup<<<grds, blks>>>(∂, Left, Lookup, stable)
11: set_unstable<<<grds, blks>>>(stable, u)
12: return Left, Lookup, u
13: function __global__ set_leftmost(∂, Left, stable)
14: gid: global thread idx

15: if дid < n then
16: if ∂[дid].lenдth = 0 then
17: stable[дid] ← 1

18: else
19: for rid ← 0 to ∂[дid].lenдth − 1 do
20: Left[rid] ← atomicMin(Left[rid], дid)
21: function __global__ set_lookup(∂, Left, Lookup, stable)
22: Input: low(·) comes with ∂

23: if дid < n then
24: if low(дid) , −1 and Left[low(дid)] = дid then
25: Lookup[low(дid)] ← дid
26: stable[дid] ← 1

27: stable[low(дid)] ← 1

28: function __global__ set_unstable(stable, u)
29: if дid < n then
30: if stable[дid] = 0 then
31: u← u ∪atomic {дid}

one by one. The set_leftmost kernel is responsible for searching

the leftmost 1s in the boundary matrix and writing them into Left.
At this step, the zero columns are also identified and their ids are put

into stable. The set_lookup kernel setups Lookup: if the lowest
1 of a column is the leftmost 1 at that row, the entry is a pivot

and is put into Lookup. We also apply the clearing lemma to zero

the low(gid), as shown in Line 27. The last step of set_unstable
excludes stable columns identified in the prior steps and prepares

the unstable column array, i.e., u, for the following phases.

Fig. 6 shows how our algorithm works over the example matrix

in Fig. 1 (b), in which the numbers in red color are the updated

values in this phase. Our algorithm collects three kinds of metadata

used for accelerating the following column additions. First, the left-

most 1s indicate which rows could be zeroed before the calculation.

Second, the lookup table keeps track of pivots. Third, we keep track

of unstable columns in u The lookup table itself can be used to

speed up the column addition by applying multiple additions in

parallel. Additionally, knowing which columns are unstable can

reduce the number of memory accesses in the following phases, by

performing the iterations over the unstable columns instead of the

whole boundary matrix.

Figure 6: GPU scans an example boundary matrix.

Data transmission: Employing GPU to scan the boundary matrix

introduces additional data transmissions. The complete boundary

matrix has to be moved to GPU before the kernel launch, and the

scanning results need to be sent back as well. We hide the CPU-

GPU data transmission in the file system I/O. When the program

reads the boundary matrix from the disk to the main memory, an

individual thread is launched to migrate the progressively read

data blocks to GPU. With this technique, copying the boundary

matrix incurs little overhead. Compared to the boundary matrix,

the scanning results are much smaller. The insignificant overhead

of GPU to CPU data transmission can be ignored.

4.3 Clearing and Compression Phase
The key idea of both clearing and compression is that if a pivot

(i, j) has been found, persistence pairs like (x , i) and (j,x)will never
exist, where x could be any index other than i and j . As a result, dis-
covering a pivot (i, j) means we can safely zero column i (clearing)
and row j (compression).

Algorithm 3 Clearing

1: procedure Clear(R)
2: for cid ← 0 to R.num_cols-1 do ▷ parallelizable

3: if low(cid) , -1 then
4: R[low(cid)] ← 0

The metadata collected in the GPU-scan phase provides us with

an opportunity to apply both techniques for preprocessing the

boundary matrix before the final matrix reduction phase on multi-

core. The pivots in the lookup table and the positions of leftmost 1s
spreads in all dimensions. Although we have already identified the

columns that we can zero by GPU, we must write the results to a

boundary matrix on CPU side (recall the GPU-scan does not write

to the matrix). Thus we first apply clearing in parallel on multicore

to affect the boundary matrix at little extra cost. Define a submatrix

as a matrix restricted to a subset of rows and columns. Knowing

the stable columns, this results in an n× (n− s) submatrix to reduce

where n is the number of columns and s is the number of stable

columns. Then we apply compression to it, further eliminating d+s’

rows where d is the number of unique finite entries in Left, and s’

is the number of nonzero stable columns.

Every column of the form low(j) for any column j can be zeroed

by Lemma 2. Any elements in the Left other than∞ indicates the

rows to be zeroed, e.g., we can set all entries at row 3 to 0 if Left[2] =
74

HYPHA ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

3, where 2 is arbitrary. Furthermore, if the compression changes a

stable column into the state containing only the lowest 1 but all

zeros at the other rows, we can safely set all entries to that lowest

1’s right as zero. This technique has the same effect as a column

addition from stable columns to unstable columns without actually

performing the column addition. During compression, we utilize

all meta data of destroyer indices (columns that must eventually

have a pivot) and known pivots from GPU-scan by clearing out

all compressible rows while adding stable columns to all unstable

columns, zeroing out the right of a stable pivot. Our implementation

is based on [4] but involves amemoized row-based depth first search

for compressible indices and uses Lemma 4.

Algorithm 4 Find compressible indices

1: procedure Find-Compressible(R, C, Left, Lookup, u)
2: ▷ The array C records if a row can be compressed

3: for cid ∈ u do ▷ parallelizable

4: for rid ∈ R[cid] do
5: SEARCH(rid)

6: function Search(rid)
7: if C[rid]=COMPRESSIBLE then
8: return true

9: else if C[rid]=INCOMPRESSIBLE then
10: return false

11: if rid ∈ Left then
12: C[rid]←COMPRESSIBLE

13: return true

14: else if Lookup[rid] > −1 then
15: for k ∈ R[Lookup[rid]] excluding rid do
16: if SEARCH(k) = false then
17: C[rid] ←INCOMPRESSIBLE

18: return false

19: C[rid] ← COMPRESSIBLE

20: return true

21: else
22: C[rid] ← INCOMPRESSIBLE

23: return false

The compression algorithmwe employ is composed of two stages.

FIND-COMPRESSIBLE(·) checks entries of the unstable columns

and marks which ones are COMPRESSIBLE. An entry will be com-

pressed if 1) its row index is a column index containing any leftmost

1, or 2) there is a stable column to its left having all nonzero entries

above it compressible. With these two conditions, more indices in

addition to the ones identified by the columns with leftmost 1s are
compressible. So we introduce a temporary array C to record these

compressible row indices. APPLY-COMPRESSION(·) is the proce-

dure which actually zeros the compressible rows (excluding pivots)

and zeros all entries to the right of (low(j),j), for j a stable column

found by GPU and low(j) an incompressible row, by column addi-

tion. Both stages of our compression algorithms are implemented

with multithreading. Despite clearing and compression having been

widely adopted, to the best of our knowledge, we are the first em-

ploying both optimizations before the matrix reduction phase. This

may minimize the additions in later computation, especially for the

tail-addition columns.

Algorithm 5 Compression

1: procedure Compression(R, Left, Lookup, u)
2: C←{ UNKNOWN }

3: FIND-COMPRESSIBLE(R, C, Left, Lookup, u)
4: APPLY-COMPRESSION(R, C, Left, Lookup, u)
5: procedure Apply-Compression(R, C Left, Lookup, u)
6: for cid ∈ u do ▷ parallelizable

7: for rid ∈ R[cid] in decreasing order do
8: pivotcol ← Lookup[rid]
9: if pivotcol = −1 then
10: if C[rid]=COMPRESSIBLE then
11: R[cid][rid] ← 0

12: else if pivotcol < cid then
13: if C[rid]=COMPRESSIBLE then
14: R[cid][rid] ← 0

15: else
16: R[cid] ← R[cid] + R[pivotcol]

To check the effects of clearing and compression in HYPHA,

we count the column additions in our algorithm, CHUNK [4] and

TWIST [11]. Notice that TWIST and spectral sequence in PHAT end

up executing the same column additions, with SS in parallel and

TWIST sequentially. Furthermore, in TWIST only clearing is applied

while in CHUNK both optimizations are adopted. Our experimental

results over three datasets are presented in Figure 7, where the

x-axes are column fraction and the y-axes are accumulated column

additions. For the high_genus_extended dataset, we can observe

that HYPHA significantly lowers the scale of tail-addition columns

and has the least total column addition number (49.65M total col-

umn additions). For the mumford dataset, HYPHA and CHUNK

both removes a large portion of column additions compared to the

TWIST algorithm, where HYPHA requires 10.73M column addi-

tions, CHUNK requires 8.60M ones and TWIST requires 35.66M

ones before the boundary matrix has been fully reduced. For the 18-
sphere dataset, HYPHA eliminates all column additions via clearing

and compression while TWIST has 19 column additions. Although

CHUNK applies both optimization techniques, it still has 74.99K col-

umn additions. From the experiments, we can observe that HYPHA

is more likely to effectively remove column additions compared to

the existing algorithms, especially for the tail-addition columns.

Computing Cohomology: There is one further optimization for

special cases [3] besides clearing and compression that can be em-

ployed optionally in HYPHA, namely computing persistent coho-

mology. Computing persistent cohomology [16][15] for persistence

pairs can potentially result in speedup over directly computing

persistent homology with the boundary matrix. This is due to a

change in the set of creator columns, replacing the original dis-

tribution of tail columns of the boundary matrix. In matrix terms,

matrix reduction involves computing persistence with columns

representing the coboundaries instead of the boundaries. In PHAT

this is performed by constructing the anti-transposed matrix [15]

[6] and performing any equivalent PH matrix reduction algorithm

on the anti-transposed matrix. The clearing lemma can thus be

applied to reducing an anti-transposed matrix. Notice how apply-

ing clearing, Lemma 2, on the anti-transposed boundary matrix is

75

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA S. Zhang et al.

0

100M

200M

300M

400M

 0.99 0.992 0.994 0.996 0.998 1

Ac
c.

 C
ol

um
n

Ad
di

tio
ns

Column Fraction
(a) high_genus_extended

TWIST/tail TWIST/non-tail TWIST/0-add. CHUNK/tail CHUNK/non-tail HYPHA/tail-add. HYPHA/non-tail HYPHA/0-add.

10M

20M

30M

40M

 0.9 0.92 0.94 0.96 0.98 1

Column Fraction
(b) mumford

0

20K

40K

60K

80K

 0.99 0.992 0.994 0.996 0.998 1

Column Fraction
(c) 18-sphere

Figure 7: The accumulated number of column additions in various datasets when using HYPHA, CHUNK and TWIST. SS and
TWIST have the same column addition distribution.

closely related to Lemma 4. In HYPHA, we are able to perform ma-

trix reduction on antitransposed boundary matrices to still find the

original persistence pairs via index transformation after reducing

the matrix.

4.4 Final Phase
For the matrix reduction stage on the extracted submatrix, we

choose either a sequential or parallel algorithm. Parallel algorithms

do not necessarily outperform sequential ones, considering the high

computational dependency among columns and the long computa-

tion chain for very few columns, i.e., the tail-addition columns. In

our design, the sequential algorithm is derived from the standard

algorithm with TWIST, and the parallel algorithm is based on the

spectral sequence algorithm but with a multi-level scheduling for

load balance. We call our parallel design as the spectral sequence

plus (SS+) algorithm, which is designed to handle imbalance column

additions to improve the classical spectral sequence (SS) algorithm.

In the SS algorithm, we observe that column additions usually

concentrate in a small portion of tiles. Scheduling one thread to

process one tile (tile-based scheduling) in the SS algorithm results

in imbalance workloads arranged to threads. Therefore, we design

our SS+ algorithm as follows: at the beginning of each round of

processing tiles along a diagonal, as long as we find the unstable

columns locate in only a small portion of tiles and the unstable

column number is much higher than the working thread number,

we schedule working threads to process unstable columns equally

(column-based scheduling); otherwise, we schedule one thread for

one tile. By dynamically switching the scheduling between tile-

and column-based, SS+ further improves the performance of matrix

reduction.

We implement our SS+ algorithm and compare it to the SS algo-

rithm from PHAT. We use two types of underlying data structures

to store the boundary matrix, vector-of-vector or bit-tree. Both of

them are implemented in PHAT. For vector-of-vector, a column is

represented as a vector of C++ and all columns are stored as the

elements of another vector. The bit-tree-based method uses the

vector-of-vector to store the boundary matrix, but an individual

column is transformed to a bit tree [21] when performing the col-

umn additions. We also test the performance of two algorithms

 10

 100

 1000

w/ clearing w/o clearing

Ru
nn

in
g

Ti
m

e
(s

)

SS/bit-tree
SS+/bit-tree

SS/vector-vector
SS+/vector-vector

Figure 8: Running time in seconds of SS+ and SS algorithms
over dataset high_genus_extended, w/ and w/o clearing, using
bit-tree or vector-of-vector as the underlying data structure.

with and without the clearing technique. The experimental results

on the real-world dataset high_genus_extended are presented in

Fig. 8, where the y-axis is the running time in seconds. The system

used for the experiment is presented in Section 5. The left and

right group of data are the performance results with and without

clearing, respectively. The pillars show the average performance

and the error bars are the standard deviation. We can see that in

all cases SS+ outperforms PHAT-SS algorithm. With clearing, SS+

completes the computation in 13.69s (bit-tree) and 46.15s (vector-

of-vector), as SS requires on average 15.20s (bit-tree) and 65.81s

(vector-of-vector), respectively. With clearing, SS+ can save 9.9%

and 29.9% execution time. Without clearing, the average running

time of SS+ are 131.58s (bit-tree) and 506.91s (vector-of-vector).

These are lower than the ones of SS, which are 167.04s (bit-tree)

and 738.19s (vector-of-vector). Without clearing, SS+ can save 21.1%

and 31.3% execution time.

Putting all the algorithms and mechanisms together, we have

developed HYPHA (Alg. 6), which is an implementation of the

framework in Fig. 5 (b). HYPHA starts from the GPU-scan to iden-

tify 0-addition columns and leftmost 1s. With collected results,

HYPHA immediately applies clearing and compression. In the final

phase, column addition is executed on multicore, with a parallel

mode or a sequential one. We use the SS+ or the original SS algo-

rithm for parallel, and the twist algorithm for sequential. Other

76

HYPHA ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

Algorithm 6 HYPHA

1: procedure HYPHA(input: ∂, an n × n matrix)

2: Left, Lookup, u← GPU-SCAN(∂) ▷ after GPU-scan,

transfer metadata from GPU to CPU

3: R← ∂ ▷ R is on CPU side

4: CLEARING(R)
5: COMPRESSION(R, Left, Lookup, u)
6: MATRIX_REDUCTION_ALGORITHM(R, Lookup, u)
7: return R

matrix reduction algorithms can also be embedded into the HY-

PHA framework to leverage the results of GPU-scan and enhanced

clearing/compression.

5 EXPERIMENTAL RESULTS
The experiments are carried out on a HPC cluster, where each node

is equipped with 2 Intel Xeon Gold 148 CPUs (40 cores in total),

running at 2.4 GHz clock rate, with a 32K L1 cache, a 1024K L2

cache, and shared 28160K L3 cache. There is also a Tesla V100 GPU

with 16 GB device DRAM installed in each node.

We compare HYPHAwith state-of-the-art parallel software pack-

ages, including PHAT [2] and DIPHA [5]. PHAT provides different

implementations of PH matrix reduction on a single node, while

DIPHA is a distributed implementation for multiple nodes. We label

these implementations as PHAT-TWIST, PHAT-SS, PHAT-CHUNK,

and DIPHA, and ours as HYPHA-TWIST and HYPHA-SS for sequen-

tial and parallel, respectively. Tab. 3 shows a high-level comparison

of functionalities. For the parallel ones, PHAT-CHUNK, PHAT-

SS, DIPHA, and HYPHA-SS follow the 2D tile partitioning; and

PHAT-CHUNK and HYPHA-SS can also partition data by columns.

HYPHA-TWIST is marked with the column partitioning because

of the parallel preprocessing steps, e.g., GPU-scan. The table also

shows only HYPHA has the enhanced compression (denoted with

two check marks), and only HYPHA-SS has different scheduling

policies for load balancing, as discussed in Sec. 4.4.

5.1 GPU-scan Throughput in HYPHA
We first compare the throughput of stable column discovery (includ-

ing those identified by the clearing lemma) of HYPHA GPU-scan

with the throughput of identifying (sequentially scanning through)

the set of 0-additions columns in TWIST (including those zeroed by

clearing). Specifically, for both GPU-scan and TWIST we measure

the number of discovered fully reduced columns divided by the

time it takes to process them. This should be a fair comparison since

GPU-scan discovers a very similar set of 0-additions columns as

TWIST. We calculate the normalized throughput in Figure 9, where

time for GPU-scan includes memory copy time and destroyer index

discovery time. HYPHA GPU-scan shows its high efficiency. On the

dataset 18-sphere, we observe the highest improvement: HYPHA

GPU-scan has a factor of 106.11x throughput improvement for iden-

tifying fully reduced columns. On the 18-sphere all but 1 column

(more than a 1 million columns) are labeled stable by HYPHA in

milliseconds. Best utilizing the massive parallelism provided by

GPU, we are able to boost the performance of our scan algorithm.

It is certainly worth performing GPU-scan to find metadata of the

Figure 9: HYPHA GPU-scan vs. TWIST 0-additions sequen-
tial scan throughput, for fully reduced columns, normalized
to the throughput of TWIST 0-additions column scanning.

input boundary matrix such as 0-additions columns. We will next

measure full matrix reduction time to get a complete picture of the

overall performance.

5.2 Overall Performance Comparisons
We evaluate the overall performance of HYPHA by comparing with

PHAT and DIPHA. Following the same experimental setup [5], we

run DIPHA on up to 40 nodes, and launch one MPI process on one

core of each node. In this case, the large cluster is much more expen-

sive than our light facility of single node of 40 cores with GPU, and

more importantly, DIPHA can utilize more cache space than others.

In this experiment, we collect the computation time for various

algorithms and measure speedup with respect to the standard PH

matrix reduction algorithm (Alg. 1) in PHAT. The results are pre-

sented in Fig. 10, which shows the HYPHA framework achieves the

best performance across all datasets. In high_genus_extended, torus,
and saddle_orbit_64, HYPHA (HYPHA-TWIST or HYPHA-SS) can

achieve 116.01x, 97.38x, and 86.52x speedups, respectively; which

are almost two orders of magnitude. Formumford and 18-sphere, the
HYPHA framework can still speedup the PH matrix reduction by a

factor of 5.01x and 14.16x over the standard algorithm. Among the

algorithms of PHAT, the best one depends on the datasets. PHAT-

TWIST outperforms the other two algorithms in torus (52.61x),
18-sphere (5.96x) and saddle_orbit_64 (37.32x) while PHAT-SS and
PHAT-CHUNK are the best ones in high_genus_extended (53.24x)
and mumford (4.27x), respectively. DIPHA is not necessarily faster

than the standard algorithm implemented in PHAT for the datasets

mumford and 18-sphere, due to the overhead of MPI communication.

For high_genus_extended, torus, and saddle_orbit_64, DIPHA run-

ning on 40 nodes achieves 16.11x, 33.02x, and 82.56x speedups. Over-

all, HYPHA outperforms the fastest algorithms of PHAT and DIPHA

in various datasets by a factor of up to 2.38x (vs. PHAT-TWIST in

18-sphere), 2.18x (vs. PHAT-SS in high_genus_extended), 1.85x (vs.
PHAT-TWIST in torus), 1.17x (vs. PHAT-CHUNK in mumford), and
1.05x (vs. DIPHA-40nodes in saddle_orbit_64), respectively.

We profile an example case to understand the sources of the per-

formance gain by HYPHA. Figure 11 presents a breakdown of run-

ning time of HYPHA-TWIST over the dataset high_genus_extended,
normalized to PHAT-TWIST. In this experiment, we individually

measure the running time for Pre-processing + 0-additions, non-tail-
additions and tail-additions, which have been identified as typical

computation tasks of PH algorithms in Section 3. By taking advan-

tage of the powerful GPU scanning, HYPHA-TWIST takes 51.10%

77

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA S. Zhang et al.

PH Implementation Sequential Parallel

Partitioning Block Column

Multi-node GPU-scan Clearing Compression

col. 2d tile based scheduling

PHAT-TWIST ✓ ✓
PHAT-SS ✓ ✓ ✓ ✓
PHAT-CHUNK ✓ ✓ ✓ ✓ ✓ ✓
DIPHA ✓ ✓ ✓ ✓ ✓
HYPHA-TWIST ✓ ✓ ✓ ✓ ✓ ✓
HYPHA-SS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 3: High-level comparisons of HYPHAwith PHAT and DIPHA. Two check marks indicate that HYPHA has the enhanced
compression, which eliminates more boundary matrix entries.

less time to processing 0-addition columns and other pre-processing

operations. Furthermore, such pre-processing significantly allevi-

ates the computation burden for the later steps. Figure 11 also shows

that for non-tail-additions and tail-additions, 65.28% and 66.45%

computations are removed, respectively.

5.3 Discussion
Having made algorithmic and systems efforts in a holistic way, we

show that the conventional "one-size-fits-all" approach does not of-

ten win. This is because to process PH matrix reduction on a MIMD

parallel computer or on a powerful single core machine would not

fully exploit rich but two different types of parallelisms exhibited in

algorithms, and would not utilize advanced and hybrid devices of

both GPU and multicore. Although parallel processing community

has impressive accomplishments of solving challenging problems

on GPU, an immediate question would be "why not execute the

whole PH matrix reduction on GPU?".

There are several reasons for not recommending using GPU

alone. First, as the analysis of Sec. 3 shows, the column addition

patterns are highly irregular. For the tail-columns, the data depen-

dency forces the additions to be sequential: only after adding one

column and updating the lowest position of the tail-column, we

can continue adding the next column until the last one. We have

traced the additions on each column of dataset torus, and identified

the highest number of sequential additions on a single column is

∼62000. Compared with the execution performance of a matrix

reduction on a single core of CPU, the performance on GPU is

underperformed. Second, the column addition needs the runtime

memory management to resize buffer, because the addition may add

or delete non-zeros on columns. For torus that has at most 3 non-

zeros in each column at the beginning, the algorithm changes the

number of non-zeros of columns to near hundreds and to even tens

of thousands at runtime. Although there are several GPU libraries

for dynamic graphs and matrices [9, 24, 38, 42] we can leverage,

the overhead of buffer resize on GPU is still too high in PH matrix

reduction. Therefore, HYPHA puts the scan phase on GPU and

leaves the highly skewed, dependent, and dynamic column addition

phase on multicore.

6 SEPARATION OF PARALLELISMS UNDER
AMDAHL’S LAW

Amdahl’s law quantifies the speedup of a program with a fraction

of work (f) to be accelerated in parallel by a factor of S as follows:

SP(f , S) =
1

(1 − f) +
f
S

. Under this framework, for a hybrid system with GPU and multi-

core, the speedup is:

SPhy (fд , fm , Sд , Sm) =
1

(1 − fд − fm) +
fд
Sд +

fm
Sm

, where fд , fm are the fractions of work for GPU and multicore,

respectively; Sд and Sm are the acceleration factors on the fractions

of work fд , fm , respectively. Since our hybrid system only consists

of two components, fд + fm = 1. Thus,

SPhy =
Sд × Sm

fд × Sm + fm × Sд

. Fig. 12 plots the curve of SPhy that monotonically increases with

respect to fд over [0,1] from Sm to Sд . Notice as long as Sm and

Sд are both > 1, then SPhy > 1. Assuming Sд > Sm , the maximum

speedup is Sд when we are able to effectively execute an application

only by GPU; and the minimum speedup is Sm without involvement

of GPU.

Although Fig. 12 quantifies execution of an application based

on separation of SIMT and MIMD parallelisms conceptually by

showing the trajectory of the performance improvement, it may

not be able to fully characterize the HYPHA framework. The reason

is as follows. Amdahl’s Law models the SIMT acceleration (Sд) and
MIMD acceleration (Sm) independently and the total performance

improvement is proportional to the contributions from the two

accelerations, namely in fractions of fд and fm . In HYPHA, the

SIMT and MIMD parallelisms are separated and the execution is

independent on GPU andmulticore, respectively. However, the GPU

scanning is not only fast, but also makes a careful preparation to

significantly improve the efficiency of the next two stage reductions.

This type of communicative and collaborative computation (see

Figure 11) may not be modeled by Amdahl’s Law.

7 RELATEDWORK
There are several PH software packages to date. Our work focuses

on reducing an arbitrary boundary matrix (PH matrix reduction).

We selected PHAT and DIPHA to compare against since they in-

volve state of the art efficient parallel algorithms for PH matrix

reduction. We briefly overview several other relevant software

efforts.

Javaplex [1] is a commonly used software for PH computation

due to the breadth of tools it offers for its users. Javaplex is not

state of the art in terms of computing performance. Dionysus [32]

is a python interfaced C++ library for PH computation. It does not

offer any parallelism that we know of. It is faster than Javaplex. It

is known to be slower than PHAT and thus we do not compare

78

HYPHA ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

100

101

102

103

high_genus_extended mumford torus 18-sphere saddle_orbit_64

Sp
ee

du
p

ov
er

PH

AT
 S

ta
nd

ar
d

Al
go

rit
hm HYPHA-TWIST

HYPHA-SS
PHAT-TWIST

PHAT-SS
PHAT-CHUNK

DIPHA-40nodes
DIPHA-20nodes
DIPHA-10nodes

Figure 10: The speedups of various algorithms over the standard PH reduction algorithm implemented in PHAT.

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

Pre-processing + 0-additions Non-tail-additions Tail-additions

N
or

m
. R

un
ni

ng
 T

im
e

PHAT-TWIST
HYPHA-TWIST

Figure 11: The time breakdown of HYPHA-TWIST running
over the dataset high_genus_extended, normalized to PHAT-
TWIST.

with it. PHAT [6] is a CPU library written in C++. It offers two

potentially parallel algorithms: spectral sequence and chunk [4].

PHAT has efficient data structures for column additions. DIPHA

[5] is a distributed computing software that can handle very large

data sets (in the billions). Ripser is a time and memory efficient soft-

ware that computes Vietoris Rips persistence barcodes (persistence

pairs) from distance matrices sequentially. Ripser performs very

well with its two (there are atleast four) optimizations: clearing [11]

and cohomology [15]. There are many datasets (any dataset that

is not a filtered Vietoris rips complex) that ripser cannot compute

with and so we do not compare with ripser. Eirene [28] uses Morse

reduction [31] for an arbitrary filtration to simplify the boundary

matrix. GUDHI [40] is a TDA C++ library for computing, amongst

many things, the persistent cohomology of certain complexes such

as rips or alpha complexes via compressed annotation matrices

[8], [19]. In addition, GPU has been used in computational geom-

etry applications, including 3D triangle meshes, [14], and Jaccard

similarity for cross-comparing spatial boundaries of segmented

objects [41].

Best utilizing the device memory in GPU is an important topic.

Efforts for high throughout have been made to dynamically allocate

memory [23] and to batch the indexing operation in key value

stores [45].

8 CONCLUSION
The high performance of HYPHA is achieved by an effective sepa-

ration of SIMT and MIMD parallelisms, which enables us to make

the following three algorithmic and system efforts. First, reduction

operations are parallelized in both SIMT and MIMD modes, and

executed on the best suitable device of GPU or multicore.

Sm

Sg

 0 0.2 0.4 0.6 0.8 1
Sp

ee
du

p
fg: Proportion of work on GPU

SPhy

Figure 12: this illustrates Amdahl’s law on a hybrid system’s
speedup by both GPU and multicore.

Second, the metadata data structures such as the lookup table

that are a byproduct of the GPU scan further improves the effi-

ciency of matrix preprocessing and parallel processing, lowering

the computing complexity. Finally, HYPHA cuts data transmission

overhead by overlapping the data loading to GPU with the same

operations on the multicore side, and reduce the data movement fre-

quency by significantly reducing the number of column additions.

Our efforts make HYPHA win both performance and hardware cost

(especially compared to a distributed algorithm like DIPHA).

Although HYPHA is developed for PH matrix reduction, it is a

framework for high performance computing of irregular execution

and data access patterns on hybrid systems. Our methodology of

understanding structural issues of algorithms and their mappings

to advanced architecture based on a holistic anatomy of a targeted

application aims for general-purpose hardware and software design.

ACKNOWLEDGMENTS
Wewould like to thank the anonymous reviewers for their insightful

comments and suggestions. We would also like to acknowledge our

colleagues, who work in the fields of topological data analysis and

high performance computing, for their reading of the manuscript:

Chao Chen, Tamal Dey, Gregory Henselman, Rodrigo Mendoza-

Smith, P. Saddayapan, and Yusu Wang; and thank Guangming Tan

and Erlin Yao for the helpful discussions on accelerating irregular

algorithms. This work has been partially supported by the National

Science Foundation under grants CCF-1513944, CCF-1629403, and

CCF-1718450 as well as an IBM scholarship.

79

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA S. Zhang et al.

REFERENCES
[1] Henry Adams and Andrew Tausz. 2011. Javaplex tutorial.

Google Scholar (2011).
[2] IST Austria. 2017. PHAT (Persistent Homology Algorithm

Toolbox), v1.5. Retrieved 01/22/2019 from https://bitbucket.

org/phat-code/phat

[3] Ulrich Bauer. 2018. Ripser: efficient computation of Vi-

etoris–Rips persistence barcodes. Retrieved 01/22/2019 from

https://github.com/Ripser/ripser

[4] Ulrich Bauer, Michael Kerber, and Jan Reininghaus. 2014. Clear

and compress: Computing persistent homology in chunks.

In Topological methods in data analysis and visualization III.
Springer, 103–117.

[5] Ulrich Bauer, Michael Kerber, and Jan Reininghaus. 2014. Dis-

tributed Computation of Persistent Homology. In Proceedings
of the Meeting on Algorithm Engineering & Expermiments. So-
ciety for Industrial and Applied Mathematics, Philadelphia,

PA, USA, 31–38.

[6] Ulrich Bauer, Michael Kerber, Jan Reininghaus, and Hubert

Wagner. 2017. Phat–persistent homology algorithms toolbox.

Journal of symbolic computation 78 (2017), 76–90.

[7] Mehmet E. Belviranli, Peng Deng, Laxmi N. Bhuyan, Rajiv

Gupta, and Qi Zhu. 2015. PeerWave: Exploiting Wavefront

Parallelism on GPUs with Peer-SM Synchronization. In Pro-
ceedings of the 29th ACM on International Conference on Su-
percomputing (ICS ’15). ACM, New York, NY, USA, 25–35.

https://doi.org/10.1145/2751205.2751243

[8] Jean-Daniel Boissonnat, Tamal K Dey, and Clément Maria.

2013. The compressed annotation matrix: An efficient data

structure for computing persistent cohomology. In European
Symposium on Algorithms. Springer, 695–706.

[9] Federico Busato, Oded Green, Nicola Bombieri, and David A

Bader. 2018. Hornet: An efficient data structure for dynamic

sparse graphs and matrices on gpus. In 2018 IEEE High Perfor-
mance extreme Computing Conference (HPEC). IEEE, 1–7.

[10] Gunnar Carlsson. 2009. Topology and data. Bull. Amer. Math.
Soc. 46, 2 (2009), 255–308.

[11] Chao Chen and Michael Kerber. 2011. Persistent homology

computation with a twist. In Proceedings 27th European Work-
shop on Computational Geometry, Vol. 11.

[12] David Cohen-Steiner, Herbert Edelsbrunner, and Dmitriy Mo-

rozov. 2006. Vines and vineyards by updating persistence in

linear time. In Proceedings of the twenty-second annual sympo-
sium on Computational geometry. ACM, 119–126.

[13] Yuri Dabaghian, Facundo Mémoli, Loren Frank, and Gunnar

Carlsson. 2012. A topological paradigm for hippocampal spa-

tial map formation using persistent homology. PLoS computa-
tional biology 8, 8 (2012), e1002581.

[14] Vin De Silva and Robert Ghrist. 2007. Coverage in sensor

networks via persistent homology. Algebraic & Geometric
Topology 7, 1 (2007), 339–358.

[15] Vin De Silva, Dmitriy Morozov, and Mikael Vejdemo-

Johansson. 2011. Dualities in persistent (co) homology. Inverse
Problems 27, 12 (2011), 124003.

[16] Vin De Silva, Dmitriy Morozov, and Mikael Vejdemo-

Johansson. 2011. Persistent cohomology and circular coordi-

nates. Discrete & Computational Geometry 45, 4 (2011), 737–

759.

[17] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale.

Commun. ACM 56, 2 (2013), 74–80.

[18] Robert H Dennard, Fritz H Gaensslen, V Leo Rideout, Ernest

Bassous, and Andre R LeBlanc. 1974. Design of ion-implanted

MOSFET’s with very small physical dimensions. IEEE Journal
of Solid-State Circuits 9, 5 (1974), 256–268.

[19] Tamal K Dey, Fengtao Fan, and Yusu Wang. 2014. Computing

topological persistence for simplicial maps. In Proceedings of
the thirtieth annual symposium on Computational geometry.
ACM, 345.

[20] Herbert Edelsbrunner and John Harer. 2010. Computational
topology: an introduction. American Mathematical Soc.

[21] Peter M. Fenwick. 1994. A New Data Structure for Cumulative

Frequency Tables. Softw. Pract. Exper. 24, 3 (March 1994), 327–

336.

[22] Kaspar Fischer. 2000. Introduction to alpha shapes. Depart-
ment of Information and Computing Sciences, Faculty of Science,
Utrecht University 17 (2000).

[23] Isaac Gelado and Michael Garland. 2019. Throughput-oriented

GPU memory allocation. In Proceedings of the 24th Symposium
on Principles and Practice of Parallel Programming. ACM, 27–

37.

[24] Oded Green and David A Bader. 2016. cuSTINGER: Supporting

dynamic graph algorithms for GPUs. In High Performance
Extreme Computing Conference (HPEC), 2016 IEEE. IEEE, 1–6.

[25] Gregory Henselman and Robert Ghrist. 2016. Matroid filtra-

tions and computational persistent homology. arXiv preprint
arXiv:1606.00199 (2016).

[26] Christoph Hofer, Roland Kwitt, Marc Niethammer, and An-

dreas Uhl. 2017. Deep learning with topological signatures. In

Advances in Neural Information Processing Systems. 1634–1644.
[27] Kaixi Hou, Hao Wang, Wu-chun Feng, Jeffrey S Vetter, and

Seyong Lee. 2018. Highly Efficient Compensation-based Paral-

lelism forWavefront Loops onGPUs. In 2018 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE,
276–285.

[28] Alan Hylton, Janche Sang, Greg Henselman-Petrusek, and

Robert Short. 2017. Performance enhancement of a computa-

tional persistent homology package. In 2017 IEEE 36th Interna-
tional Performance Computing and Communications Conference
(IPCCC). IEEE, 1–8.

[29] Ann B Lee, Kim S Pedersen, and David Mumford. 2003. The

nonlinear statistics of high-contrast patches in natural images.

International Journal of Computer Vision 54, 1-3 (2003), 83–103.
[30] Rodrigo Mendoza-Smith and Jared Tanner. 2017. Parallel

multi-scale reduction of persistent homology filtrations. arXiv
preprint arXiv:1708.04710 (2017).

[31] Konstantin Mischaikow and Vidit Nanda. 2013. Morse theory

for filtrations and efficient computation of persistent homol-

ogy. Discrete & Computational Geometry 50, 2 (2013), 330–353.

[32] Dmitriy Morozov. 2017. Dionysus Software. Retrieved

01/22/2019 from http://www.mrzv.org/software/dionysus/

[33] Partha Niyogi, Stephen Smale, and Shmuel Weinberger. 2008.

Finding the homology of submanifolds with high confidence

from random samples. Discrete & Computational Geometry 39,

80

https://bitbucket.org/phat-code/phat
https://bitbucket.org/phat-code/phat
https://github.com/Ripser/ripser
https://doi.org/10.1145/2751205.2751243
http://www.mrzv.org/software/dionysus/

HYPHA ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

1-3 (2008), 419–441.

[34] Nina Otter, Mason A Porter, Ulrike Tillmann, Peter Grindrod,

and Heather A Harrington. 2017. A roadmap for the compu-

tation of persistent homology. EPJ Data Science 6, 1 (2017),
17.

[35] Rahul Paul and Stephan K Chalup. 2017. A study on vali-

dating non-linear dimensionality reduction using persistent

homology. Pattern Recognition Letters 100 (2017), 160–166.
[36] I Present. 2000. Cramming more components onto integrated

circuits. Readings in computer architecture 56 (2000).
[37] William J Reed. 2001. The Pareto, Zipf and other power laws.

Economics letters 74, 1 (2001), 15–19.
[38] Mo Sha, Yuchen Li, Bingsheng He, and Kian-Lee Tan. 2017.

Accelerating Dynamic Graph Analytics on GPUs. Proc. VLDB
Endow. 11, 1 (Sept. 2017), 107–120.

[39] Edwin H Spanier. 1989. Algebraic topology. Vol. 55. Springer
Science & Business Media.

[40] The GUDHI Project. 2015. GUDHI User and Reference Man-
ual. GUDHI Editorial Board. http://gudhi.gforge.inria.fr/doc/

latest/

[41] Kaibo Wang, Yin Huai, Rubao Lee, Fusheng Wang, Xiaodong

Zhang, and Joel H. Saltz. 2012. Accelerating Pathology Image

Data Cross-comparison on CPU-GPU Hybrid Systems. Proc.
VLDB Endow. 5, 11 (July 2012), 1543–1554.

[42] Martin Winter, Daniel Mlakar, Rhaleb Zayer, Hans-Peter Sei-

del, and Markus Steinberger. 2018. faimGraph: High Perfor-

mance Management of Fully-dynamic Graphs Under Tight

Memory Constraints on the GPU. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking,
Storage, and Analysis (SC ’18). IEEE Press, Piscataway, NJ, USA,

Article 60, 13 pages.

[43] Michael Wolfe. 1986. Loops skewing: The wavefront method

revisited. International Journal of Parallel Programming 15, 4

(1986), 279–293.

[44] Yuan Yuan, Rubao Lee, and Xiaodong Zhang. 2013. The Yin

and Yang of processing data warehousing queries on GPU

devices. Proceedings of the VLDB Endowment 6, 10 (2013),

817–828.

[45] Kai Zhang, Kaibo Wang, Yuan Yuan, Lei Guo, Rubao Lee, and

Xiaodong Zhang. 2015. Mega-KV: a case for GPUs to maximize

the throughput of in-memory key-value stores. Proceedings of
the VLDB Endowment 8, 11 (2015), 1226–1237.

81

http://gudhi.gforge.inria.fr/doc/latest/
http://gudhi.gforge.inria.fr/doc/latest/

	Abstract
	1 Introduction
	2 Background
	2.1 Standard Matrix Reduction Algorithm
	2.2 Clearing and Compression
	2.3 Spectral Sequence Algorithm

	3 Anatomy of PH matrix reduction
	4 The HYPHA Framework
	4.1 Overview
	4.2 GPU-scan Phase
	4.3 Clearing and Compression Phase
	4.4 Final Phase

	5 Experimental Results
	5.1 GPU-scan Throughput in HYPHA
	5.2 Overall Performance Comparisons
	5.3 Discussion

	6 Separation of Parallelisms Under Amdahl's Law
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

