
Catfish: Adaptive RDMA-enabled R-Tree for Low
Latency and High Throughput

Mengbai Xiao†, Hao Wang†, Liang Geng†§, Rubao Lee‡, Xiaodong Zhang†

†Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA

{xiao.736, wang.2721, geng.161}@osu.edu, zhang@cse.ohio-state.edu

§Department of Computer Science and Engineering, Northeastern University, China

‡United Parallel Computing Corporation, DE, USA, lirb@unipacc.com

Abstract—R-tree is a foundational data structure used in spa-
tial databases and scientific databases. With the advancement of
Internet and computer architectures, in-memory data processing
for R-tree in distributed systems has become a common platform.
We have observed new performance challenges to process R-tree
as the amount of multidimensional datasets become increasingly
huge. Specifically, an R-tree server can be heavily overloaded
while the network and client CPU are lightly loaded, and vice
versa.

In this paper, we present the design and implementation
of Catfish, an RDMA enabled R-tree for low latency and
high throughput by adaptively utilizing the available network
bandwidth and computing resources to balance the workloads
between clients and servers. We design and implement two basic
mechanisms of using RDMA for the client-server R-tree. First,
in the fast messaging design, we use RDMA writes to send
R-tree requests to the server and let server threads process
R-tree requests to achieve low query latency. Second, in the
RDMA offloading design, we use RDMA reads to offload tree
traversal from the server to the client, which rescues the server
as it is overloaded. We further develop an adaptive scheme
to effectively switch an R-tree search between fast messaging
and RDMA offloading, maximizing the overall performance.
Our experiments show that the adaptive solution of Catfish
on InfiniBand significantly outperforms R-tree that uses only
fast messaging or only RDMA offloading in both latency and
throughput. Catfish can also deliver up to one order of magnitude
performance over the traditional schemes using TCP/IP on 1
Gbps and 40 Gbps Ethernet. We make a strong case to use
RDMA to effectively balance workloads in distributed systems
for low latency and high throughput.

I. INTRODUCTION

R-tree [1] is a fundamental data structure for storing and

querying multidimensional data like rectangles and poly-

gons, which are the essential data representations in scien-

tific databases, spatial databases, and big data systems. In

production systems, e.g., Google Maps [2], Yelp [3], and

others, front-end web servers accept user requests such as

"Search this area" and "find restaurants near me" from Internet,

and send the spatial queries to back-end servers hosting an

R-tree data structure. Figure 1 presents a typical system

infrastructure in the client-server mode, where users send the

requests of "searching nearby restaurants" via Web servers, and

queries are processed in the back-end server with R-tree. Our

observations on representative R-tree processing in the real-

world motivating us for this work are described as follows.

Web servers Back-end servers
R-Tree

Nearby
restaurants?

Requested
areas

Data center

A B

Fig. 1: An example of accessing spatial data in an R-tree,

where A represents an Internet connection and B represents

the intra-datacenter connection.

We carry out experiments on a small cluster to identify the

locations of bottlenecks in the scenario shown in Figure 1.

The experimental cluster uses 1 Gbps Ethernet to connect

multiple compute nodes (Detailed setups are introduced in

Section V). In the experiments, multiple clients send requests

to a server and the server is responsible for searching the R-

tree and returning the results. On the single server, an R-tree

is pre-built with 2 million 2D rectangles, whose edges and

locations are normalized in [0, 1], which means that a square

with edges equaling 1 covers the whole space. The clients

launch independent threads (from 2 to 32) that continuously

send 10,000 search requests to the server. The requested

rectangles are designated with randomly generated locations

and all overlapped rectangles in the R-tree are expected to

be returned.We set various upper bounds over the edges of

requested rectangles for simulating different types of searching

workload. The experimental results are illustrated in Figure 2,

in which the x-axis is the number of clients, the left y-axis

is the normalized server CPU utilization and the right y-axis

represents server bandwidth in Gbps. Figure 2(a) presents the

results when setting the upper bound of requested rectangles

to 0.01. In this case, the numbers of overlapped rectangles

found in the R-tree are very large, and the bandwidth of server

is easily saturated while only up to 28% server CPU cycles

are used. This occurs when a user wants to monitor relevant

objects in a large range of area, like how many properties

would be impaired in an area that a hurricane would pass.

Figure 2(b) shows the results when setting the edge upper

bound of requested rectangles to 0.00001. Only few intersected

rectangles are found in the R-tree. Until the server CPU

utilization has been pushed up to 100%, only 65.8% bandwidth

164

2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDCS.2019.00024

30

100

24 48 72 96 120 144 168 192

0

1

2

N
or

m
. S

er
ve

r
C

P
U

 U
til

.

S
er

ve
r

B
an

dw
id

th
 (

G
bp

s)

of Clients

Serv. CPU Util. Serv. Bandwidth

(a) R-tree search with bandwidth bound

100

24 48 72 96 120 144 168 192

0

1

N
or

m
. S

er
ve

r
C

P
U

 U
til

.

S
er

ve
r

B
an

dw
id

th
 (

G
bp

s)

of Clients

Serv. CPU Util. Serv. Bandwidth

(b) R-tree search with CPU bound

Fig. 2: The normalized server CPU utilization and server

bandwidth measured in different R-tree search workloads.

is consumed. Such a query in a small scope often happens, e.g.,

searching nearby restaurants or gas stations in Google Maps.

Our experiments indicate that when accessing a memory-

resident R-tree, both the CPU and network bandwidth of the

server could be saturated by highly simultaneous requests,

becoming the performance bottlenecks. And such bottlenecks

will be further aggravated by skew access patterns in real

workloads [4]. The bottlenecks cannot be easily solved by

updating hardware. For example, changing the network to 40

Gbps Ethernet does not help in the CPU-bound case as shown

in Figure 2(b). Instead, the server CPU will be saturated more

quickly as more R-tree requests will arrive at the server with

the increased network bandwidth.

Bottlenecks of network and server CPU are observed phe-

nomenon. However, having looked into the entire workload

execution process, we identify three opportunities: 1) CPUs

on the client side are often lightly loaded. 2) When server

is heavily loaded, network is often lightly loaded. 3) When

network is saturated, server may not be overloaded. These

opportunities motivate us to develop a new system mechanism

to balance the workloads between client and server by using

available network bandwidth and idle CPU cycles on the client

side, aiming for low latency and high throughput. Remote

Direct Memory Access (RDMA) is an effective facility to help

us to achieve this goal.

RDMA is widely deployed in data centers with modern

interconnects. As opposed to the send and recv operations in

TCP/IP, an RDMA node is able to directly read (RDMA Read

[5]–[11]) and write (RDMA Write [12]–[14]) a remote address

registered in RDMA hardware with higher bandwidth (100 -

290 Gbps) and lower latency (a few microseconds), and more

importantly, without interrupting remote CPUs. As a result, the

RDMA-based R-tree is a promising solution that can overcome

the identified bottlenecks, especially the CPU-bound case.

However, there are several challenges to directly apply RDMA

Read/Write on R-tree. First, both the requests and responses

could be delivered via RDMA Write, but this requires the

server-side CPU to be aware of the incoming request and be

involved with request processing. Thus, it cannot handle the

CPU bound cases of R-tree search as shown in Figure 2 (b).

Second, by using RDMA Read a client can directly read data

in remote memory and the workload is offloaded from server to

client. This method is able to free server-side CPU cycles, but

it incurs multiple RDMA Read round trips in R-tree traversal,

making the query latency unacceptable.
To address these issues, we propose Catfish, a distributed

R-tree on RDMA that can adaptively use RDMA Write and

RDMA Read to build a high performance R-tree. The reason

we name our system as Catfish comes from a consideration

for its strong adaptability, which is the goal in our design

and implementation. Catfish has two unique advantage for

its survival: 1) high skin sensitivity to timely detect dynamic

changes in the environment and 2) high flexibility in turning its

body to adopt the changes. Our Catfish system is outlined as

follows. First, we implement the RDMA-based R-tree, where

the read requests, i.e., searching a rectangle, are completed

in either RDMA Write or RDMA Read. For R-tree write

requests, such as insert, update, delete, and others, the RDMA-

Write-based solution are always used. We refer to the scheme

using RDMA Write for R-tree reads as fast messaging and the

other one as RDMA offloading. Second, we observe that when

server-side CPUs are not saturated, fast messaging is highly

effective, since it only needs one RDMA round-trip time (RTT)

and sever-side CPUs handle R-tree traversal with several

local memory accesses; while, when the server is overloaded

but with abundant bandwidth resources, RDMA offloading

is more effective, since it can offload R-tree traversal to

clients and utilize client-side CPUs. Therefore, we design a

heuristic coordination mechanism to make every single client

to determine its own R-tree access method autonomously.

A client can adaptively switch to the best execution mode

between fast messaging and RDMA offloading at runtime.

Third, we also enhance fast messaging and RDMA offloading,

respectively. We change to the event-driven mode on R-tree

server to avoid CPU oversubscription, significantly improving

the performance of fast messaging. We also overlap network

RTTs of RDMA Read in RDMA offloading by a multi-issue

technique: when traversing an R-tree, the client simultaneously

sends multiple RDMA reads to query all valid child nodes.
We carry out our experiments on a cluster having 1Gbps

Ethernet, 40Gbps Ethernet, and 100Gbps InfiniBand connec-

tions. For the workloads composed of 100% search requests,

Catfish delivers up to 3.28x, 3.09x and 16.46x speedups of

throughput and 3.25x, 3.07x, and 24.46x reductions of request

latency over fast messaging, RDMA offloading, and TCP/IP-

based schemes, respectively. Similar performance gains are

also observed with the skewed search requests and the hybrid

workloads having both R-tree search and insert requests. This

paper makes the following contributions.

1) To the best knowledge of ours, this is the first design and

implementation of R-tree on RDMA with high performance.

2) We propose an adaptive coordination mechanism to en-

able autonomous switch between fast messaging and RDMA

offloading in clients, achieving the best overall performance.

3) We carry out extensive experiments to demonstrate the

effectiveness of our designs, particularly the adaptive scheme.

We make a strong case to use RDMA to effectively balance

workloads in distributed systems for high performance.

165

3

4

4

Requested
area

Root node

Leaf node#1 Leaf node#2

(a) An example R-Tree
client server

Send requested area

Search intersected
rectangles

Response intersected
rectangle 2 and 3

Process results

(b) Fast messaging

RDMA Write RDMA Read

Computation on server Computation on client
1

2

client server
Process results

Retrieve root node

Search in
root node Retrieve leaf node#2

Search in
leaf node#2

(rect. 3 found) Retrieve leaf node#1

(c) RDMA offloading

Search in
leaf node#1

(rect. 2 found)
1 2

1

2
3

4

3

Fig. 3: The illustration of an R-tree organization, and how fast messaging and RDMA offloading complete a spatial query on

the R-tree in the client-server mode.

II. BACKGROUND AND MOTIVATION

A. R-Tree

An R-tree is a height-balanced tree containing spatial ob-

jects, e.g., rectangles and polygons, in its leaf nodes. Other

than leaf nodes, the root node or an internal node of an R-

tree includes the Minimum Bounding Rectangles (MBRs), or

bounding boxes, of its child nodes. An MBR is the smallest

rectangle that encloses a set of rectangles. In this work,

we store 2-dimensional rectangles in leaf nodes, and each

rectangle has four double precision floating-point variables

to represent its coordinates, as min(x), max(x), min(y), and

max(y). Figure 3 (a) gives an example of a two-level R-tree

having four rectangles, and the dashed boxes are the MBRs.

An R-tree provides the basic index operations, e.g., search

and insert. The search operation traverses all internal nodes

whose MBRs intersect with the given rectangle until the leaf

nodes containing overlapped rectangles are found or there is

no such leaf node. Multiple search paths and qualified leaf

nodes may exist. In Figure 3 (a), for the shadow box that

represents the request rectangle, there are two search paths,

and rectangle 2 and rectangle 3 will be found as the results.

The insert operation also starts from the root and tries to

find a leaf node to contain the request rectangle. At each level,

the insert algorithm selects the node whose MBR will have the

minimum enlargement if it contains the request. If there is a

tie, the algorithm will select the node having the minimum

area. When finding a leaf node to insert, the algorithm will

recursively update MBRs in the path from the leaf to the

root. The insert operation may lead to the split of a node,

which can be a leaf, an internal, or even the root. Different

split algorithms will generate different structures of R-tree

that contain the same set of rectangles, but vary the search

performance. In this work, we use the mechanisms of R∗-

tree [15] for the rectangle insertion and R-tree split. Because

the search and insert can concurrently access an R-tree node,

leading to the read-write and write-write conflicts, the lock

mechanisms [16] are adopted for the concurrency control,

which depends on the CPU to execute the low-level atomic

instructions.

B. RDMA

RDMA is a network standard that provides high-bandwidth

and low-latency by bypassing OS kernel processing and the

remote CPU involvement in the communication. Figure 4

shows a comparison of using TCP/IP and RDMA.

Ethernet

Kernel

User Buffer
Sockets API

Kernel Bypass

Internal Buffer

RDMA Verbs API

Socket

TCP

IP

User Buffer

Ethernet

Kernel

User Buffer
Sockets API

Internal Buffer

Socket

TCP

IP

User Buffer

Kernel Bypass

InfiniBand InfiniBandNode 0 Node 1

Fig. 4: TCP/IP vs. RDMA. RDMA can directly send data

in a user buffer of the local node to a receive buffer at the

remote node (or vice versa). The remote CPU and both side

OS kernels are bypassed. While, TCP/IP needs OS kernels

to process data packets, involving several internal memory

copies. CPUs on both sides are also required.

Without involving the remote CPUs, an RDMA node can

access data at another node via RDMA Read and RDMA Write.

An RDMA node reads or writes a piece of remote memory

according to a virtual address. Such virtual addresses are reg-

istered to network cards and are exchanged among nodes via

TCP connections in advance. RDMA Read and RDMA Write

are non-blocking, so the return of the operations does not

guarantee the data written to remote memory or fetched back

to the local memory. Polling is a commonly used technique

for checking the completion of these operations. RDMA also

supports the communication paradigm like the traditional TCP

connection that both the sender and the receiver are aware of

the data transmission, i.e., RDMA Send and Receive. But this

method consumes more system resources and cannot achieve

high performance as RDMA Read/Write [17]. In this paper,

all communications are built upon RDMA Read and RDMA

Write on the reliable connection (RC) of RDMA.

166

III. BASIC R-TREE DESIGNS OVER RDMA

In a TCP/IP-based client-server R-tree, a client first estab-

lishes a TCP connection with the server and then the client

sends requests to the server via the TCP/IP connection. The

R-tree server keeps listening on the established connection, ac-

cepts incoming requests, performs requested R-tree operations,

and responds by returning the results to the client. Replacing

TCP/IP with RDMA Read/Write, we can either follow the

server-aware method by using RDMA Write, or switch to

a server-unaware method for the R-tree search by exploiting

RDMA Read. We name these two solutions as fast messaging
and RDMA offloading.

A. Fast Messaging

In this design, the client and server pre-allocate their user-

level buffers for containing request/response messages. In an

R-tree access, the client directly writes the request to the server

buffer via RDMA Write. The worker thread at server keeps

polling the buffer to retrieve the request and then performs the

corresponding operations, including search, insert, delete, and

others. The results are directly written back to the client buffer

also via RDMA Write. Figure 3(b) illustrates how a typical

search works over a two level R-tree. In this example, the

search results are retrieved after two RDMA writes and the

R-tree traversal as the computation is carried out at server.

With this method, RDMA is only used to accelerate data

communication, and the R-tree operations are still handled by

the server threads, similar to the TCP/IP-based solution.

The pre-allocated buffer at both sides are organized as a

ring buffer for efficiency. Figure 5 shows the structure of the

ring buffer, with several messages having variable lengths. A

message in the ring buffer has a fixed format. The message

size defines the whole size of the message. The receiver can

check the message size, as shown in the figure "The other

side is waiting here", to retrieve the size of current message.

Following the size, the message type is designed for data

segmentation, and the "request or response data" are for real

payload. For variable sizes of response, the type field is flagged

with "CONT" if more messages for the current response are

arriving, and "END" ends the response.

There are two pointers for the ring buffer. The free pointer,

also called tail, points to where the sender should write a new

message. The processed pointer, also called head, points to

where the receiver retrieve the earliest message. As shown in

Figure 5, there are three messages, i.e., msg 0-2, having been

sent from the sender to the receiver. The next message, e.g.,

msg 3, will arrive at the position pointed by the free pointer

except that the message size exceeds the space between the

tail and the head. The receiver is responsible for updating the

processed pointer at the other side so that the sender can know

if the previously-sent messages have been consumed. With the

ring buffer mechanism, the client can send R-tree requests to

the server, and the server can send R-tree responses to the

client.

For the R-tree itself, we implement the R∗-tree [15] al-

gorithm to split an R-tree node when it is full. To handle

Fig. 5: Ring buffer design for RDMA Write

the concurrent accesses from multiple clients, we implement

the concurrent lock [16] to avoid the read-write conflict and

write-write conflict. Therefore, in the fast messaging design,

R-tree itself is nearly the same to the original R-tree, while

the communication between the server and the client is based

on RDMA Write, instead of TCP/IP in existing client-server

R-tree designs.

B. RDMA Offloading

In the second design, the client is able to directly read R-

tree nodes from the server via RDMA Read, and traverses the

tree at the client side. The client starts from fetching the root

node of R-tree, and checking the root node to know which

child nodes have the MBRs intersected with the request. The

child nodes are retrieved via RDMA Read, and this process

repeats until the client finds a set of (or none of) rectangles at

leaf nodes intersected with the request. Figure 3(c) gives an

example of R-tree traversal over RDMA Read. In this case,

the client issues an RDMA read to fetch the root node, does

the intersection check, and finds nodes 1 and 2 are intersected

with the request. Then, the client issues two separate RDMA

reads to fetch these nodes and gets rectangles 2 and 3 as the

results. In practice, this method incurs multiple network RTTs,

impairing the performance of R-tree accesses.

In RDMA offloading, we still use RDMA Write to send R-

tree write requests, e.g., insert and delete, to the ring buffer of

the server; and let the server threads handle the write requests.

Note that such a design will not use RDMA Write to directly

modify the R-tree. Therefore, the lock mechanism can prevent

the write-write conflict as the write operations are enforced by

the server threads.

In this design, we need a concurrency control mechanism

at the client side for the R-tree read operations, because

the retrieved R-tree node via RDMA Read is possibly being

written by a server thread. Since server-side CPUs are totally

bypassed in RDMA Read, we cannot depend on a conventional

lock mechanism to prevent the read-write conflict. We apply a

version number-based mechanism [6] to avoid the read-write

conflict. This method inserts a version number to each cache

line of an R-tree node when creating the node, and updates the

version number in any write operation, e.g., insert or delete.

When an RDMA read fetches a node back to the client, the

167

client needs to check if all version numbers of this node are

consistent. If not, there is a read-write conflict and the client

has to retry this read. The concurrency control is ensured

because both RDMA Read (from the client) and CPU Write

(from the server) are cache-line atomic.

Besides the concurrency control, RDMA offloading needs

an additional mechanism for the memory management. As the

R-tree can be directly accessed by clients via RDMA Read in

RDMA offloading, the memory address of R-tree needs to

be registered at the server-side network card and propagated

back to clients. In order to reduce the overhead of memory

registration [18], [19], we allocate enough memory on server

to hold the whole R-tree, and register the memory to the

network card once. During the connection initialization, the

registered memory address is returned to the client. We also

divide this buffer into small chunks, each of which is for an

R-tree node. Using the address of registered memory as the

start point and the chunk ID as the offset, a client can use

RDMA Read to fetch any R-tree node.

IV. ADVANCED R-TREE DESIGNS OVER RDMA

There are drawbacks of only using a single solution at a

time. Fast messaging achieves high performance because of its

fast communication speed on RDMA Write and a single RTT

required. However, as the server runs out its CPU cycles, the

access latency gets much longer when there are increasingly

more clients sending requests, even if the bandwidth are not

used up. For RDMA offloading, it can reduce heavy loads

in the server, however, the cost of multiple RTTs in a R-tree

search must be a consideration for its usage. The larger the

height of an R-tree, the higher its overhead is.

There are three sources of resources: server CPU cycles,

client CPU cycles, and network bandwidth between the above

two. Here are our observations on the dynamics of the three

resources. When the server-side CPU is not a performance

bottleneck, fast messaging can accelerate the communication

for both request and response. Since RDMA offloading can

complete an R-tree search without any server CPU resources,

it is possible to improve the overall system throughput by using

RDMA offloading as a complementary R-tree access method,

in the case that the server CPUs are busy but the server

bandwidth is abundant. However, it is challenging to design

a comprehensive solution to best utilize all the resources,

because clients are independent and may not choose the

most proper action. An adaptive and automatic coordination

mechanism is desirable to assist clients to determine which

R-tree access method should be used.

A. Adaptive R-Tree Search

Our coordination mechanism is analogous to the binary

exponential back-off (BEB) protocol in Ethernet [20] and

Wireless LAN [21]. The mechanism is composed of two

modules at the clients and the server, respectively. The server

module is responsible for notifying the connected clients of the

server CPU loads. The R-tree server periodically (10 ms in our

setup) collects and embeds its CPU utilization statistics into a

Algorithm 1 The adaptive solution with the back-off algorithm

1: procedure RTREE-SEARCH-ADAPTIVE(req)

2: Input: Inv, userv , N , T , rbusy , roff , getTimeOfDay(·)
3: FastMessaging(·), RDMAOffloading(·), predUtil(·)
4: � N , T and predUtil(·) are configurable

5: U ← 0
6: t← getTimeOfDay()
7: if t− t0 > Inv and userv �= 0 then
8: U ←predUtil(userv)
9: memset(userv, 0)

10: t0 ← getTimeOfDay()
11: end if
12: if U > T and roff ≤ rbusy ·N then
13: rbusy ← rbusy + 1
14: roff ← rand() %N + (rbusy − 1) ·N
15: else
16: rbusy ← 0
17: end if
18: if roff > 0 then
19: roff ← roff − 1
20: RDMAOffloading(req)

21: else
22: FastMessaging(req)

23: end if
24: end procedure

heartbeat that is sent to all active clients by the aforementioned

ring buffer design. By analyzing the heartbeats, a client knows

if there are available CPU cycles for future RDMA searches.

Understanding the server status is not enough. If all clients

choose RDMA offloading for their future requests when the

server is busy, the server CPUs would be idle very soon and

the system throughput would degrade. To avoid this side effect

that all clients switch to RDMA offloading simultaneously, we

design the client module to follow an adaptive rule: when a

client finds the server is busy, it switches to RDMA offloading

for the next n requests, where n is chosen randomly from

[0, N) and N is a predefined parameter. In this way, the

clients will switch back to fast messaging at a different time,

avoiding congestion again. The candidate interval will further

back off to [N, 2N), if the server CPUs are found still busy

after two consecutive requests. The back-off continues without

an upper bound. So in the extreme case, all R-tree searches of

a client are completed with RDMA offloading. Note that, in

our design, R-tree write requests are always sent to the server

via the ring buffer and processed by the sever CPUs. This

is the major reason why we allow all R-tree searches to be

processed by RDMA offloading.

Our adaptive search algorithm is shown in Alg. 1. Variable

Inv stands for the heartbeat interval and userv is the memory

region where the heartbeats are written. These two variables

are agreed by the client and server when the RDMA con-

nection is established, and allowed to be different in multiple

client-server pairs. T is a predefined threshold for identifying

168

tail

polling

head

server

tail

polling

head

Msg. (RDMA Write)

tail

Msg.
head

tail

wait on

head

Ring buffer

WC
queue

wake up

head

Msg. (RDMA Write w/ IMM)
tail

New WC

tail

Msg.
head

(a) polling-based fast messaging (b) event-based fast messaging

Step 1

Step 2

Step 3

Ring buffer
client clientserver

Fig. 6: Polling- vs. event-based fast messaging. (a) For polling-based fast
messaging, the server keeps polling the tail of the ring buffer for detecting
message arrival (step 1). As a message is starting to be delivered to the ring
buffer via RDMA Write, the server changes the polling position to know when
delivery is completed (step 2). Eventually, the server can retrieve the complete
message from the ring buffer (step 3). (b) For event-based fast messaging, the
server waits on a Work Completion (WC) queue and yields the CPU (step
1). If a message has arrived via RDMA Write with Immediate Data (RDMA
Write w/ IMM), the RDMA NIC will also generate a notification in the WC
queue and wake up the thread waiting on it (step 2), which then retrieves the
message (step 3).

if the server CPU is busy. rbusy shows in how many continuous

rounds the server is identified as busy and roff means how

many rounds the R-tree searches should be offloaded to

the client, where a round means a complete RDMA search.

predUtil(·) predicts the server CPU utilization based on the

server CPU information sent to the client. Currently, we use

the most recent CPU utilization as the predicting value. The

algorithm first checks the server CPU information in userv .

It ignores that no heartbeat has arrived, because the reason

of the delay could be the saturated server bandwidth. In

this case, switching to RDMA offloading will consume more

bandwidth. Second, our algorithm determines if it switches

to RDMA offloading and how many rounds this should last.

If the current communication method is RDMA offloading

but the server is still busy, the offloading rounds will be

extended. Finally, the client processes the R-tree search request

by using fast messaging or RDMA offloading according to

the determination. Besides the coordination mechanism that

adaptively switch the R-tree search methods, we also optimize

the fast messaging and RDMA offloading for R-tree.

B. Event-based Fast Messaging

Conventionally, for handling RDMA Write, the server

thread needs to poll a piece of memory region agreed by both

sides to recognize the message arrival. Figure 6 (a) illustrates

how the polling-based fast messaging works. However, the

server-side CPU cycles on such busy polling may increase

linearly with the number of active connections. Even worse

is the case of CPU oversubscription, i.e., the number of

connections is larger than the number of CPU cores. Because

the OS kernel is responsible for thread scheduling, a thread

that is not scheduled by OS is delayed in polling, even if

its request has arrived; and other scheduled threads may be

wasting the CPU cycles if there are no incoming requests in

their connections. To investigate how severe this problem is,

128

1K

8K

80 160 240 320

A
ve

ra
g
e
 L

a
n
te

n
cy

 (
u
s)

of Clients

(a) R-tree searches at the scale of 0.00001

polling-based event-based

128

1K

8K

80 160 240 320
of Clients

(b) R-tree searches at the scale of 0.01

Fig. 7: Performance comparisons of polling- vs. event-based

fast messaging on 100 Gbps InfiniBand.

we conduct an experiment in which the server-side CPUs are

saturated by R-tree searches. The experimental setup is the

same as that in Section I, except that the nodes are connected

by InfiniBand for RDMA and the number of clients varies

from 80 to 320.

As shown in Figure 7 (a), the polling-based fast messaging

has the average search latency at 203.96 μs, when there are 80

clients sending the requests at the scale of 0.00001 (the scale

of 0.00001 corresponds to the case of server CPU-bound).

But the average latency quickly reaches as high as 3712.35

μs (18.2x worse), when there are 320 clients. Figure 7 (a)

also shows that when the R-tree accesses are bound to server-

side CPUs, the polling-based fast messaging makes the search

latency increases quadratically. Since we consider the use case

of data center as shown in Figure 1, where the number of active

clients to a single R-tree server can easily exceed the number

of CPU cores on a server, a new design must address this issue

for RDMA Write-based fast messaging.

We change the notification mechanism of RDMA Write

on server from being polling-based to being event-based.

This event-based fast messaging is described in Figure 6 (b).

Specifically, other than polling, a server thread blocks on its

RDMA connection and yields the occupied CPU until the

arrival of next message. We modify our ring buffer design on

both the server and the client for an event-based connection

as below. In the client, we change the regular RDMA Write
to RDMA Write with Immediate Data. This method

will generate a Work Completion carrying the immediate

data in a completion queue at the server when the request

message has been written to the ring buffer of the server. In

the server, each thread creates an event channel and registers it

over the completion queue. As a result, the server thread yields

the CPU by waiting on the event channel and is awaken if a

request arrives.

The effects of using the event-based mechanism are shown

in Figure 7, in which 80 clients has the average search latency

of 152.50 μs for search requests at the scale of 0.00001. By

increasing the client number to 320, the average search latency

linearly increases to 680.47 μs. The similar performance trend

can be observed if the search requests are sets at the scale of

0.01. As a result, the event-based design can make the R-tree

accesses more scalable on RDMA.

169

client server
Process results

Retrieve
root node

Search in
root node Retrieve

leaf node#2

Search in leaf node#2
(rectangle 3 found)

Retrieve
leaf node#1Search in leaf node#1

(rectangle 2 found)

(a) RDMA offloading with multi-issue

 0.6

 0.7

 0.8

 0.9

 1

 1.1

10-5 10-4 10-3 10-2

N
o
rm

.
A

ve
ra

g
e
 L

a
n
te

n
cy

Scale of Requests

w/o multi-issue with multi-issue

(b) Latency of RDMA offloading w/ and w/o
multi-issue on 100 Gbps InfiniBand

Fig. 8: RDMA offloading with multi-issue and its performance

C. RDMA Offloading with Multi-issue

A major concern of RDMA offloading in R-tree search is

its multiple network RTTs, where each R-tree node access

corresponds to an RDMA read. To address this issue, our

basic idea is not to retrieve R-tree nodes one by one during

the traversal; and instead, we simultaneously dispatch multiple

RDMA reads to fetch as many as possible R-tree nodes. The

network RTTs can be hidden in a pipeline. We name it as

multi-issue that is quite suitable for the R-tree structure and

traversal. First, there is no dependency between child nodes

at the same R-tree level. Once we get a parent node, we

can obtain multiple child node pointers. Second, different

with the B-tree search, which goes along one path from the

root to a leaf node, an R-tree search involves multiple paths

since it needs to check if the request is intersected with all

child nodes in the current MBR. As a result, after checking

the intersection of the request and the current R-tree node,

the multi-issue technique can issue multiple RDMA reads

to fetch all intersected child nodes. Figure 8(a) shows two

RDMA reads are issued to retrieve nodes 1 and 2 for the

case in Figure 3(a). These two RDMA reads are pipelined

on the client-side network card, the network connection, and

the server-side network card. Moreover, once the RDMA

read for retrieving leaf node 2 returns, the client can do the

intersection check immediately, which further overlaps the

following RDMA read retrieving leaf node 1.

We experimentally check the efficacy of multi-issue, as

shown in Figure 8(b). The setups are similar as the experiment

in Section IV-B, except that only one client is involved.

We send R-tree search requests at four different scales from

0.00001 to 0.01. At all request scales, the multi-issue technique

can effectively improve the R-tree search performance. Among

all cases, the most search latency reduction of 15.13% appears

at the scale of 0.01 that mimics the search on a large scope.

V. EXPERIMENTAL RESULTS

We carry out our evaluations on a cluster including 9

compute nodes. Each node has a dual-socket Intel Xeon E5-

2680 v4 (2×14-core Intel Broadwell, 2.40 GHz, 512 GB

DDR4). There are three types of network cards installed

on each node, including: (1) an Intel I350 1Gbps Ethernet

controller, (2) a Mellanox MT27500 Family (ConnectX-3)

adapter card, supporting 40Gbps Ethernet connectivity, and

1

10

100

1K

10K

100K

8 128 2K 32K 512K 8M

A
vg

.
L
a
n
te

n
cy

 (
u
s)

Data Volume (Bytes)

(a) Average Latency

TCP-1G TCP-40G RDMA-RD RDMA-WR

10-3

10-2

10-1

1

10

40
100

8 128 2K 32K 512K 8M

A
vg

.
T

h
ro

u
g
h
p
u
t
(G

b
p
s)

Data Volume (Bytes)

(b) Average Throughput

Fig. 9: Micro benchmark of different communication methods

(3) a Mellanox MT27800 Family (ConnectX-5) adapter card,

supporting EDR 100Gbps InfiniBand connectivity. We use one

node as the server and remaining nodes for independent clients

(up to 32 clients per node and 256 clients in total).

We label the socket-based R-tree solutions as "TCP/IP-1G"

and "TCP/IP-40G" for 1Gbps Ethernet and 40Gbps Ethernet,

respectively. We implement FaRM [6] for R-tree and label

their methods as "Fast messaging" and "RDMA offloading"

as the baselines of RDMA solutions. We implement our op-

timizations, including the event-driven fast messaging, multi-

issue-based offloading, and our adaptive solution as "Catfish".

All these methods are integrated with R∗-tree [15].

A. Micro benchmark

We implement a pair of TCP/IP server and client. The client

keeps sending requests (1 Byte) to the server and the server

responses the client with different sizes of data chunks. For

InfiniBand, we use the perftest benchmark [22], in which data

chunks are delivered over RDMA Read or RDMA Write. For

both TCP/IP and RDMA communication, the size of data

chunks ranges from 2 Bytes to 8M Bytes, and the transmission

of a data chunk only begins if the previous one has finished.

The results of transmission latency are shown in Figure 9(a).

We can see that RDMA Write has the lowest average latency

and TCP/IP over 1G Ethernet has the highest average latency.

RDMA Read has higher transmission latency than RDMA

Write, especially for the small data sizes. That is because

RDMA Read needs a round trip of network communication,

while RDMA Write is one direction. We also observe that the

latency of all methods keeps nearly constant when sending

small data (< 2K), but when delivering medium and large

data (> 2K), the latency is determined by the bandwidth.

We also measure the transmission throughput, and the results

are shown in Figure 9(b). The TCP/IP over 1 Gbps Ethernet

has the lowest throughput while the two RDMA connections

have the highest throughput as expected. In all methods, the

bandwidth can only be fully exploited when sending medium

and large data (> 2K).

B. R-Tree Throughput and Latency

To evaluate Catfish, we build an R-tree with 2 million

rectangles, whose edges scale in the range of (0, 0.0001]
randomly. We put the R-tree in the main memory of the server.

170

0

250

500

750

1000

1250

 32 64 128 256

T
h
o
u
g
h
p
u
t
(K

o
p
s)

of Clients

(a) Request scale = 0.01

0

250

500

750

1000

 32 64 128 256

of Clients

(b) Request scale = 0.01

TCP/IP-1G TCP/IP-40G Fast messaging RDMA o oading Cat sh

0

250

500

750

1000

1250

 32 64 128 256

of Clients

(c) Request scale = power law

Fig. 10: The throughput of workloads composed of 100% search requests at various scales to an R-tree.

10

102

103

32 64 128 256

A
ve

ra
g
e
 L

a
n
te

n
cy

 (
u
s)

of Clients

(a) Request scale = 0.00001

10

102

103

104

32 64 128 256

of Clients

(b) Request scale = 0.01

TCP/IP-1G TCP/IP-40G Fast messaging RDMA o oading Cat sh

10

102

103

32 64 128 256

of Clients

(c) Request scale = power law

Fig. 11: The latency of workloads composed of 100% search requests at various scales to an R-tree.

The other 8 compute nodes host independent clients (from 4

to 32 per node) and each client issues 10000 search requests

via different methods. The request scale is one of 0.00001,

0.01, or power law: The request scale of 0.00001 means the

edges of a requested rectangle are randomly selected from

(0, 0.00001]. These are CPU intensive workloads, representing

a search in a geographically small scope. The scale of 0.01,

on the other hand, is designed for bandwidth intensive cases,

representing a search in a large scope. We also generate the

requests according to a power law distribution, where the

probability of request scales complies to f(t) ∝ t−0.99, and

t ∈ (0.00001, 0.01], resulting in much more requests to search

in a small scope. This is for the skewed search cases that is

general in the real world. For "Fast messaging" and Catfish, we

allocate a ring buffer of 256 KB for each pair of connections.

For Catfish, we set the parameter N to 8 and T to 95%,

meaning that each client will use RDMA offloading for at most

8 consecutive requests when observing the CPU utilization on

server is higher than 95%.

In the first group of evaluations, all requests are search

operations (read only). The results are shown in Figure 10 and

Figure 11. In Figure 10, the y-axis is the throughput in kilo-

operations-per-second (Kops) and the x-axis is the number of

clients. We can see that Catfish achieves the highest throughput

in all cases. When there are 256 clients, Catfish handles the

R-tree accesses at a rate of 1239.35 Kops (for request scale

of 0.00001), 779.89 Kops (for request scale of 0.01), and

1124.84 Kops (for the power law distribution). In Figure 10

(a), we can see for the CPU-bound case, directly using RDMA,

no matter RDMA-Write-based fast messaging or RDMA-

Read-based offloading, cannot get good performance, even

compared to the TCP/IP-based solution on 1Gbps Ethernet.

Fast messaging has the worst throughput, because when the

server-side CPUs become the bottleneck, the faster to send

client requests to the server, the more overloaded the server

becomes. As shown in the figure, RDMA offloading cannot

get good performance either, because all search operations

are executed at the clients with too many network RTTs. For

the network-bound case in Figure 10 (b), RDMA offloading

that trades the network bandwidth for the server-side CPU

cycles cannot help. In this case, fast messaging is preferred.

All these drawbacks of using RDMA are solved by Catfish,

since the Catfish clients can adaptively switch to the enhanced

fast messaging and RDMA offloading. In terms of throughput,

Catfish outperforms fast-messaging and RDMA offloading by

up to 3.28x and 3.09x, respectively. And the improvement of

Catfish over the TCP/IP based schemes is up to 16.46x.

The results of latency are presented in Figure 11. Catfish

has much lower request latency compared with fast messaging,

because of the timely offloading when the server-side CPU is

saturated and the event-based mechanism for detecting request

arrivals. For the experiments with 256 clients, the average

search latency of Catfish is 140.73 μs (0.00001), 180.66 μs
(0.01), and 161.58 μs (power law), while fast messaging needs

299.10 μs, 321.52 μs, and 302.91 μs. RDMA offloading has

constantly low search latency, and even better than Catfish in

some cases, e.g., the latency of 256 clients at sale 0.00001 in

Figure 11 (a). There are two major reasons for this case. First,

each client of Catfish needs to run the back-off algorithm. The

algorithm execution time is the overhead of Catfish. Second,

our back-off algorithm is heuristic: only if a client switches

back to fast messaging, it can find the CPU utilization on

server is still high and needs to use RDMA offloading. When

the server-side CPU are constantly overloaded, clients need

171

0

250

500

750

1000

1250

 32 64 128 256

T
h
o
u
g
h
p
u
t
(K

o
p
s)

of Clients

(a) Request scale = 0.01

0

250

500

750

 32 64 128 256

of Clients

(b) Request scale = 0.01

TCP/IP-1G TCP/IP-40G Fast messaging RDMA o oading Cat sh

0

250

500

750

1000

 32 64 128 256

of Clients

(c) Request scale = power law

Fig. 12: The throughput of workloads composed of 90% search requests and 10% insert requests at various scales to an R-tree.

10

102

103

32 64 128 256

A
ve

ra
g
e
 L

a
n
te

n
cy

 (
u
s)

of Clients

(a) Request scale = 0.00001

10

102

103

104

32 64 128 256

of Clients

(b) Request scale = 0.01

TCP/IP-1G TCP/IP-40G Fast messaging RDMA o oading Cat sh

10

102

103

104

32 64 128 256

of Clients

(c) Request scale = power law

Fig. 13: The latency of workloads composed of 90% search requests and 10% insert requests at various scales to an R-tree.

to stay on offloading instead of switching back and force. A

possible solution is that in a recent study [23], which uses

machine learning methods to select the best configuration at

the runtime. We leave this to our future work. As shown in

the figure, both TCP/IP solutions have much higher average

latency, since the messages have to go through all network

stacks in OS kernel. Overall, Catfish can reduce the average

latency by up to 3.25x (over fast messaging), 3.07x (over

RDMA offloading), and 24.46x (over TCP/IP based).

We also evaluate Catfish with workloads that have both

search and insert operations. The results are shown in Fig-

ure 12 and Figure 13. In the experiments, the clients indepen-

dently generates 90% search requests and 10% insert requests.

The rectangle scales of both search and insert requests are

the same as those in the previous experiments. We select

the locations for the insert rectangles as follows: 1) both the

x and y coordinates are firstly selected following a power

law distribution f(t) ∝ t−0.99, where t ∈ (0.5, 1.0]. 2)

Then we randomly offset the insert position (x, y) to one

of (x, y), (1 − x, y), (x, 1 − y) and (1 − x, 1 − y). This

represents the skewed insertion that mimics the geographical

data updates more often happening in city areas. Catfish can

still achieve the highest throughput, except 256 clients sending

requests at the scales of 0.01 and the power law distribution.

In these two cases, the insert operations have dominated the

server-side CPUs and the adaptive algorithm can hardly help,

because Catfish is for optimizing R-tree search operations.

The performance of RDMA offloading slightly degrades when

increasing the number of clients. This is because more inserts

are done at the server, the higher probability the clients will

find the read-write conflict in the offloading. For the query

latency, we can observe the same trend as the search-only

0

250

500

750

1000

1250

 32 64 128 256

T
h

o
u

g
h

p
u

t
(K

o
p

s)

of Clients

(a) Throughput

TCP/IP-1G
TCP/IP-40G

Fast messaging

RDMA o oading
Cat sh

10

102

103

104

32 64 128 256

A
ve

ra
g
e
 L

a
n
te

n
cy

 (
u
s)

of Clients

(b) Latency

TCP/IP-1G
TCP/IP-40G

Fast messaging

RDMA o oading
Cat sh

Fig. 14: The performance comparisons of R-tree search on the

real dataset rea02.

experiments. Overall, Catfish improves the throughput by up

to 3.3x (over fast messaging), 13.67x (over RDMA offloading),

and 14.22x (over TCP/IP based) and reduces the average

latency by up to 7.55x (over fast messaging), 1.90x (over

RDMA offloading), and 58.09x (over TCP/IP based).

C. Tests on a Real-world Dataset

We also evaluate Catfish by using a real world dataset

rea02 [24]. This dataset is composed of 1,888,012 rectangles

representing street segments in California, US. The rectangles

are grouped as sub-regions which have roughly 20,000 objects.

These sub-regions are inserted in a random order while inside

a sub-region, the rectangles are inserted in the row order, west

to east. The rows are inserted from north to south. The dataset

also provides search requests. The query file guarantees that on

average 100 rectangles will be returned, and the actual number

for a request randomly distributes from 50 to 150.

The experimental results are shown in Figures 14 (a) and

(b). In the figures, we can observe the same performance trends

as the search-only experiments, in which Catfish has achieved

the highest throughput and the lowest search latency against

the other schemes. Catfish improves the throughput by up to

172

2.23x (over fast messaging), 4.28x (over RDMA offloading),

and 27.25x (over TCP/IP based). It reduces the average latency

by up to 2.32x, 3.47x, and 56.09x.

VI. THE APPLICATION SCOPE OF CATFISH

Although we focus on improving R-tree by Catfish in

this paper, our RDMA-based system is designed for general-

purpose, because Catfish consists of three major components

that are applications independent, namely, fast messaging,

offloading, and an adaptive mechanism between them. Catfish

is a framework for accessing link-based data structures over

RDMA, such as B+tree and Cuckoo hashing, and R-tree in

data centers. In this paper, we make a strong case for using

RDMA in this group of applications. While Catfish suggests

an effective mechanism balancing computation and network

resources, it is also possible to add more intricate functions in

Catfish to maximize its efficiency. For example, the server can

periodically predict the overloading period and the response

latency for clients instead of CPU utilization in the current

design. In this way, clients can make a more accurate decision

to initiate offloading or not.

VII. RELATED WORK

Besides scientific databases and spatial databases, R-tree is

adopted by many big data systems deployed in data centers,

including SpatialHadoop [25], Hadoop-GIS [26], Simba [27],

LocationSpark [28], iSPEED [29], DITA [30], etc. All of these

systems need to access R-tree or its variants, e.g., R∗-tree, R+-

tree, IR-tree, Hilbert R-tree, etc., with a client-server mode in

the distributed environment. Catfish can be used to improve

their performance by balancing server-side CPU resources and

network bandwidth resources.

With the decreasing DRAM price, distributed in-memory

systems [5]–[9], [12], [31], [32] are prevalent in data centers.

Many researchers start to explore RDMA for reducing the

communication overhead of these systems. Jose et al. [12]

improve the Put performance of key-value store by using

RDMA. The client sends the memory address of a key-value

pair to the server, and the server uses an RDMA read to fetch

the key-value at the client. Mitchell et al. [5] propose Pilaf,

a key-value store on RDMA. The Pilaf client can directly

read a key-value pair in the server via RDMA Read, and use

RDMA Write to send write requests to the server. This is a

hybrid solution using fast messaging and RDMA offloading,

but without the adaptive design and optimizations proposed

in this work. Kalia et al. [32] propose HERD, a hybrid key-

value store, which uses RDMA Write to send both Put and

Get requests to the server, but sends responses to the client via

RDMA Message on UD (Unreliable Datagram). As UD is not

a reliable connection, the key-value store system has to support

the reliable transport, e.g., the packet retransmission, fragmen-

tation, etc. Jose et al. [33] propose another hybrid solution of

using RC and UD for Memcached, where RC is used for the

high performance and UD is used for the large scale. Wang et

al. [7] propose C-Hint, a client-side cache system on RDMA.

C-Hint uses RDMA Write to report hot key-value pairs to the

server, and uses a leasing-based mechanism to mange cached

key-value pairs on the client. HydraDB [8] is a key-value

store on RDMA, combining the cache system of C-Hint and

the out-of-place update mechanism on the server. Dragojevic

et al. [6] propose FaRM, a distributed memory system on

RDMA. FaRM uses RDMA Read to read remote objects and

uses RDMA Write to send write requests to sever for the

object modification. The version number-based mechanism is

proposed to detect the read-write conflict, making FaRM be a

general solution of using RDMA for data-center applications.

Cell [10] is an RDMA-enabled B-tree, which balances the

overhead between client and server by providing a client-side

cache for top levels of B-tree. Hadoop RPC [14] uses RDMA

to implement RPC in Hadoop, bypassing the JVM memory

management for high performance. FaSST [34] is a fast and

scalable RPC system that uses two-sided RDMA Message on

the unreliable connected (UC) and unreliable datagram (UD)

transports. This method requires the server to handle network

communication. Su et al. [35] show the asymmetric in-bound

and out-bound performance of RDMA network cards, and

propose Remote Fetching Paradigm (RFP) to reduce the out-

bound overhead on server for RDMA-enabled RPC. Liu et

al. [36] use RDMA Message on UD to optimize the shuffle

operators for database queries. Salama [11] design an over-

lapping mechanism to overlap the RDMA read on network

and local query processing. Several studies [37]–[40] use

RDMA to speedup distributed transactions. These studies use

RDMA Atomics to coordinate distributed transactions in the

two-phase commit protocol. However, Kalia et al. [41] reveal

the poor performance of RDMA Atomics. Dragojevic et al. [9]

construct distributed transactions on the basis of FaRM [6] that

uses RDMA Read and Write, and report better performance

than RDMA Atomic-based solutions.

VIII. CONCLUSION

In this paper, we present Catfish, an RDMA-enabled R-

tree to achieve low latency and high throughput. Besides

enhancing the existing communication facilities of RDMA

software, we have developed an adaptive scheme to effec-

tively switch between fast messaging and RDMA offloading

to balance the resource utilization for R-tree. Experiments

show the effectiveness of Catfish, which is the only available

RDMA-based R-tree (to our best knowledge). Our adaptive

mechanism and load balancing method can also be applied in

other RDMA-enabled applications to best utilize RDMA in a

timely fashion.

IX. ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their

encouragement, constructive comments and suggestions. This

work has been partially supported by the National Science

Foundation under grants CCF-1513944, CCF-1629403, and

IIS-1718450.

173

REFERENCES

[1] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in Proceedings of the 1984 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’84. New York, NY, USA: ACM,
1984, pp. 47–57.

[2] Google, “Google maps,” 2005. [Online]. Available: https://maps.google.
com

[3] Yelp, “Yelp inc.” 2004. [Online]. Available: https://www.yelp.com
[4] A. P. Iyer and I. Stoica, “A scalable distributed spatial index for the

internet-of-things,” in Proceedings of the 2017 Symposium on Cloud
Computing, ser. SoCC ’17. New York, NY, USA: ACM, 2017, pp.
548–560.

[5] C. Mitchell, Y. Geng, and J. Li, “Using one-sided rdma reads to build a
fast, cpu-efficient key-value store,” in Proceedings of the 2013 USENIX
Conference on Annual Technical Conference, ser. USENIX ATC’13.
Berkeley, CA, USA: USENIX Association, 2013, pp. 103–114.

[6] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro, “Farm: Fast
remote memory,” in Proceedings of the 11th USENIX Conference on
Networked Systems Design and Implementation, ser. NSDI’14. Berke-
ley, CA, USA: USENIX Association, 2014, pp. 401–414.

[7] Y. Wang, X. Meng, L. Zhang, and J. Tan, “C-hint: An effective and
reliable cache management for rdma-accelerated key-value stores,” in
Proceedings of the ACM Symposium on Cloud Computing, ser. SOCC
’14. New York, NY, USA: ACM, 2014, pp. 23:1–23:13.

[8] Y. Wang, L. Zhang, J. Tan, M. Li, Y. Gao, X. Guerin, X. Meng,
and S. Meng, “Hydradb: A resilient rdma-driven key-value middleware
for in-memory cluster computing,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’15. New York, NY, USA: ACM, 2015, pp. 22:1–
22:11.

[9] A. Dragojević, D. Narayanan, E. B. Nightingale, M. Renzelmann,
A. Shamis, A. Badam, and M. Castro, “No compromises: Distributed
transactions with consistency, availability, and performance,” in Proceed-
ings of the 25th Symposium on Operating Systems Principles, ser. SOSP
’15. New York, NY, USA: ACM, 2015, pp. 54–70.

[10] C. Mitchell, K. Montgomery, L. Nelson, S. Sen, and J. Li, “Balancing
cpu and network in the cell distributed b-tree store,” in Proceedings of
the 2016 USENIX Conference on Usenix Annual Technical Conference,
ser. USENIX ATC ’16. Berkeley, CA, USA: USENIX Association,
2016, pp. 451–464.

[11] A. Salama, C. Binnig, T. Kraska, A. Scherp, and T. Ziegler, “Rethinking
distributed query execution on high-speed networks,” Data Engineering,
p. 27, 2017.

[12] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang, M. Wasi-ur
Rahman, N. S. Islam, X. Ouyang, H. Wang, S. Sur, and D. K. Panda,
“Memcached design on high performance rdma capable interconnects,”
in Proceedings of the 2011 International Conference on Parallel Pro-
cessing, ser. ICPP ’11. Washington, DC, USA: IEEE Computer Society,
2011, pp. 743–752.

[13] N. S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar, H. Wang,
H. Subramoni, C. Murthy, and D. K. Panda, “High performance rdma-
based design of hdfs over infiniband,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, ser. SC ’12. Los Alamitos, CA, USA: IEEE Computer Society
Press, 2012, pp. 35:1–35:35.

[14] X. Lu, N. S. Islam, M. Wasi-Ur-Rahman, J. Jose, H. Subramoni,
H. Wang, and D. K. Panda, “High-performance design of hadoop rpc
with rdma over infiniband,” in Proceedings of the 42nd International
Conference on Parallel Processing, ser. ICPP ’13. Washington, DC,
USA: IEEE Computer Society, 2013, pp. 641–650.

[15] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The r*-tree:
An efficient and robust access method for points and rectangles,” in
Proceedings of the 1990 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’90. New York, NY, USA: ACM,
1990, pp. 322–331.

[16] M. Kornacker and D. Banks, “High-concurrency locking in r-trees,” in
Proceedings of the 21th International Conference on Very Large Data
Bases, ser. VLDB ’95. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1995, pp. 134–145.

[17] A. Dragojevic, D. Narayanan, and M. Castro, “Rdma reads: To use or
not to use?” IEEE Data Eng. Bull., vol. 40, no. 1, pp. 3–14, 2017.

[18] M. Li, K. Hamidouche, X. Lu, H. Subramoni, J. Zhang, and D. K. Panda,
“Designing mpi library with on-demand paging (odp) of infiniband:
challenges and benefits,” in Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis.
IEEE Press, 2016, p. 37.

[19] S.-Y. Tsai and Y. Zhang, “Lite kernel rdma support for datacenter
applications,” in Proceedings of the 26th Symposium on Operating
Systems Principles, ser. SOSP ’17. New York, NY, USA: ACM, 2017,
pp. 306–324.

[20] R. M. Metcalfe and D. R. Boggs, “Ethernet: Distributed packet switching
for local computer networks,” Communications of the ACM, vol. 19,
no. 7, pp. 395–404, 1976.

[21] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specification, IEEE Std. 802.11, 1997.

[22] M. Technologies, “Performance tests (perftest) package for ofed,” 2015.
[Online]. Available: https://github.com/linux-rdma/perftest

[23] D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang, “Automatic
database management system tuning through large-scale machine learn-
ing,” in Proceedings of the 2017 ACM International Conference on
Management of Data, ser. SIGMOD ’17. New York, NY, USA: ACM,
2017, pp. 1009–1024.

[24] N. Beckmann and B. Seeger, “A benchmark for multidimensional
index structures,” 2008. [Online]. Available: http://www.mathematik.
uni-marburg.de/~seeger/rrstar/index.html

[25] A. Eldawy and M. F. Mokbel, “Spatialhadoop: A mapreduce framework
for spatial data,” in Data Engineering (ICDE), 2015 IEEE 31st Interna-
tional Conference on. IEEE, 2015, pp. 1352–1363.

[26] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz,
“Hadoop gis: A high performance spatial data warehousing system over
mapreduce,” Proc. VLDB Endow., vol. 6, no. 11, pp. 1009–1020, Aug.
2013.

[27] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo, “Simba: Efficient
in-memory spatial analytics,” in Proceedings of the 2016 International
Conference on Management of Data, ser. SIGMOD ’16. New York,
NY, USA: ACM, 2016, pp. 1071–1085.

[28] M. Tang, Y. Yu, Q. M. Malluhi, M. Ouzzani, and W. G. Aref, “Lo-
cationspark: A distributed in-memory data management system for big
spatial data,” Proc. VLDB Endow., vol. 9, no. 13, pp. 1565–1568, Sep.
2016.

[29] Y. Liang, H. Vo, J. Kong, and F. Wang, “ispeed: An efficient in-
memory based spatial query system for large-scale 3d data with complex
structures,” in Proceedings of the 25th ACM SIGSPATIAL Interna-
tional Conference on Advances in Geographic Information Systems, ser.
SIGSPATIAL’17. New York, NY, USA: ACM, 2017, pp. 17:1–17:10.

[30] Z. Shang, G. Li, and Z. Bao, “Dita: Distributed in-memory trajectory
analytics,” in Proceedings of the 2018 International Conference on
Management of Data, ser. SIGMOD ’18. New York, NY, USA: ACM,
2018, pp. 725–740.

[31] A. Qin, M. Xiao, J. Ma, D. Tan, R. Lee, and X. Zhang, “DirectLoad:
A Fast Web-scale Index System across Large Regional Centers,” in
2019 IEEE 35th International Conference on Data Engineering (ICDE).
IEEE, 2019.

[32] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using rdma efficiently
for key-value services,” in Proceedings of the 2014 ACM Conference on
SIGCOMM, ser. SIGCOMM ’14. New York, NY, USA: ACM, 2014,
pp. 295–306.

[33] J. Jose, H. Subramoni, K. Kandalla, M. Wasi-ur Rahman, H. Wang,
S. Narravula, and D. K. Panda, “Scalable memcached design for
infiniband clusters using hybrid transports,” in Proceedings of the 2012
12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (Ccgrid 2012), ser. CCGRID ’12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 236–243.

[34] A. Kalia, M. Kaminsky, and D. G. Andersen, “Fasst: Fast, scalable
and simple distributed transactions with two-sided (rdma) datagram
rpcs,” in Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’16. Berkeley, CA,
USA: USENIX Association, 2016, pp. 185–201.

[35] M. Su, M. Zhang, K. Chen, Z. Guo, and Y. Wu, “Rfp: When rpc is faster
than server-bypass with rdma,” in Proceedings of the Twelfth European
Conference on Computer Systems, ser. EuroSys ’17. New York, NY,
USA: ACM, 2017, pp. 1–15.

[36] F. Liu, L. Yin, and S. Blanas, “Design and evaluation of an rdma-aware
data shuffling operator for parallel database systems,” in Proceedings of
the Twelfth European Conference on Computer Systems, ser. EuroSys
’17. New York, NY, USA: ACM, 2017, pp. 48–63.

[37] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen, “Fast in-memory
transaction processing using rdma and htm,” in Proceedings of the 25th

174

Symposium on Operating Systems Principles, ser. SOSP ’15. New York,
NY, USA: ACM, 2015, pp. 87–104.

[38] Y. Chen, X. Wei, J. Shi, R. Chen, and H. Chen, “Fast and general
distributed transactions using rdma and htm,” in Proceedings of the
Eleventh European Conference on Computer Systems, ser. EuroSys ’16.
New York, NY, USA: ACM, 2016, pp. 26:1–26:17.

[39] C. Binnig, A. Crotty, A. Galakatos, T. Kraska, and E. Zamanian, “The
end of slow networks: It’s time for a redesign,” Proc. VLDB Endow.,

vol. 9, no. 7, pp. 528–539, Mar. 2016.
[40] E. Zamanian, C. Binnig, T. Harris, and T. Kraska, “The end of a myth:

Distributed transactions can scale,” Proc. VLDB Endow., vol. 10, no. 6,
pp. 685–696, Feb. 2017.

[41] A. Kalia, M. Kaminsky, and D. G. Andersen, “Design guidelines for
high performance rdma systems,” in Proceedings of the 2016 USENIX
Conference on Usenix Annual Technical Conference, ser. USENIX ATC
’16. Berkeley, CA, USA: USENIX Association, 2016, pp. 437–450.

175

